Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 185000 | | Number of Logic Elements/Cells | 490000 | | Total RAM Bits | 46080000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma5k3f40c3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 2 Electrical Characteristics Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2) | Transceiver Speed | | | | Core Spe | ed Grade | | | | |-----------------------|----|---------|-----|----------|----------|---------|--------------------|-----| | Grade | C1 | C2, C2L | C3 | C4 | 12, 12L | 13, 13L | I3YY | 14 | | 3 GX channel—8.5 Gbps | _ | Yes | Yes | Yes | _ | Yes | Yes ⁽⁴⁾ | Yes | #### Notes to Table 1: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. - (3) C2L, I2L, and I3L speed grades are for low-power devices. - (4) I3YY speed grades can achieve up to 10.3125 Gbps. Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2) | Transacius Crad Crado | Core Speed Grade | | | | | | | |--|------------------|-----|-----|-----|--|--|--| | Transceiver Speed Grade | C1 | C2 | 12 | 13 | | | | | 2
GX channel—12.5 Gbps
GT channel—28.05 Gbps | Yes | Yes | _ | _ | | | | | 3
GX channel—12.5 Gbps
GT channel—25.78 Gbps | Yes | Yes | Yes | Yes | | | | #### Notes to Table 2: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. ### **Absolute Maximum Ratings** Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions. Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device. Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2) | Symbol | Description | Minimum | Maximum | Unit | |---------------------|--|---------|---------|------| | V _{CC} | Power supply for core voltage and periphery circuitry | -0.5 | 1.35 | V | | V _{CCPT} | Power supply for programmable power technology | -0.5 | 1.8 | V | | V _{CCPGM} | Power supply for configuration pins | -0.5 | 3.9 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | -0.5 | 3.4 | V | | V _{CCBAT} | Battery back-up power supply for design security volatile key register | -0.5 | 3.9 | V | | V _{CCPD} | I/O pre-driver power supply | -0.5 | 3.9 | V | | V _{CCIO} | I/O power supply | -0.5 | 3.9 | V | Electrical Characteristics Page 3 Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2) | Symbol | Description | Minimum | Maximum | Unit | |-----------------------|--------------------------------|---------|---------|------| | V _{CCD_FPLL} | PLL digital power supply | -0.5 | 1.8 | V | | V _{CCA_FPLL} | PLL analog power supply | -0.5 | 3.4 | V | | V _I | DC input voltage | -0.5 | 3.8 | V | | T _J | Operating junction temperature | -55 | 125 | °C | | T _{STG} | Storage temperature (No bias) | -65 | 150 | °C | | I _{OUT} | DC output current per pin | -25 | 40 | mA | Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices. Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices | Symbol | Description | Devices | Minimum | Maximum | Unit | |-----------------------|--|------------|---------|---------|------| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left side) | GX, GS, GT | -0.5 | 3.75 | V | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right side) | GX, GS | -0.5 | 3.75 | V | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | -0.5 | 3.75 | V | | V _{CCHIP_L} | Transceiver hard IP power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHIP_R} | Transceiver hard IP power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_L} | Transceiver PCS power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_R} | Transceiver PCS power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCT_GXBL} | Transmitter analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCL_GTBR} | Transmitter clock network power supply (right side) | GT | -0.5 | 1.35 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | -0.5 | 1.8 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | -0.5 | 1.8 | V | ### **Maximum Allowed Overshoot and Undershoot Voltage** During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. Page 6 Electrical Characteristics Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |-------------------|------------------------|--------------|--------------------|-----|--------------------|------| | t _{RAMP} | Power cupply ramp time | Standard POR | 200 μs | _ | 100 ms | _ | | | Power supply ramp time | Fast POR | 200 μs | _ | 4 ms | _ | #### Notes to Table 6: - (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. - (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low. - (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades. - (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices. Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | | |------------------------|---|------------|------------------------|---------|------------------------|------|--| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left | GX, GS, GT | 2.85 | 3.0 | 3.15 | V | | | (1), (3) | side) | ७४, ७७, ७१ | 2.375 | 2.5 | 2.625 | V | | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right | GX, GS | 2.85 | 3.0 | 3.15 | V | | | $(1), (\overline{3})$ | side) | রম, রহ | 2.375 | 2.5 | 2.625 | V | | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | 2.85 | 3.0 | 3.15 | V | | | | Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHIP_L} | Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V_{CCHIP_R} | Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHSSI_L} | Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT
 0.87 | 0.9 | 0.93 | V | | | $V_{\text{CCHSSI_R}}$ | Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | | | 0.82 | 0.85 | 0.88 | | | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | | (2) | Treceiver arialog power supply (left side) | un, us, ui | 0.97 | 1.0 | 1.03 | v | | | | | | 1.03 | 1.05 | 1.07 | | | Electrical Characteristics Page 11 | | | | Resistance Tolerance | | | | | | |----------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------|--| | Symbol | Description | Conditions | C1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | | 100-Ω R _D | Internal differential termination (100-Ω setting) | V _{CCPD} = 2.5 V | ±25 | ±25 | ±25 | ±25 | % | | Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change. OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration. Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6) $$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$ ### Notes to Equation 1: - (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} . - (2) R_{SCAL} is the OCT resistance value at power-up. - (3) ΔT is the variation of temperature with respect to the temperature at power-up. - (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up. - (5) dR/dT is the percentage change of R_{SCAL} with temperature. - (6) dR/dV is the percentage change of R_{SCAL} with voltage. Table 13 lists the on-chip termination variation after power-up calibration. Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.0297 | | | | 007 | 2.5 | 0.0344 | | | dR/dV | OCT variation with voltage without recalibration | 1.8 | 0.0499 | %/mV | | | Todanstation | 1.5 | 0.0744 | | | | | 1.2 | 0.1241 | | Page 16 Electrical Characteristics Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2) | I/O | | V _{CCIO} (V) | | V _{DIF(I} | _{DC)} (V) | | V _{X(AC)} (V) | | | V _{CM(DC)} (V |) | V _{DIF(} | ^{/C)} (A) | |------------------------|------|-----------------------|------|--------------------|-------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------|---------------------------|-------------------|-----------------------------| | Standard | Min | Тур | Max | Min | Max | Min | Тур | Max | Min | Тур | Max | Min | Max | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.16 | V _{CCIO} + 0.3 | _ | 0.5*
V _{CCIO} | _ | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.3 | V _{CCIO}
+ 0.48 | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.26 | 0.26 | 0.5*V _{CCIO}
- 0.12 | 0.5*
V _{CCIO} | 0.5*V _{CCIO}
+ 0.12 | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.44 | 0.44 | Table 22. Differential I/O Standard Specifications for Stratix V Devices (7) | I/O | Vc | _{CIO} (V) | (10) | | V _{ID} (mV) ⁽⁸⁾ | | | $V_{ICM(DC)}$ (V) | | | D (V) (| 6) | V _{OCM} (V) ⁽⁶⁾ | | | |------------------------------|--|--------------------|-------|------|-------------------------------------|-----|-------|-----------------------------|-------|-------|---------|-------|-------------------------------------|------|-------| | Standard | Min | Тур | Max | Min | Condition | Max | Min | Condition | Max | Min | Тур | Max | Min | Тур | Max | | PCML | Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 23 on page 18. | | | | | | | | | | | | | | | | 2.5 V | 1 7 3 / 5 1 7 5 1 7 6 7 5 1 1 1 1 1 1 1 1 | | _ | 0.05 | D _{MAX} ≤ 700 Mbps | 1.8 | 0.247 | | 0.6 | 1.125 | 1.25 | 1.375 | | | | | LVDS (1) | 2.373 | 2.3 | 2.023 | 100 | 1.25 V | | 1.05 | D _{MAX} > 700 Mbps | 1.55 | 0.247 | _ | 0.6 | 1.125 | 1.25 | 1.375 | | BLVDS (5) | 2.375 | 2.5 | 2.625 | 100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | RSDS
(HIO) ⁽²⁾ | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = 1.25 V | _ | 0.3 | _ | 1.4 | 0.1 | 0.2 | 0.6 | 0.5 | 1.2 | 1.4 | | Mini-
LVDS
(HIO) (3) | 2.375 | 2.5 | 2.625 | 200 | _ | 600 | 0.4 | _ | 1.325 | 0.25 | _ | 0.6 | 1 | 1.2 | 1.4 | | LVPECL (4 | _ | _ | _ | 300 | _ | _ | 0.6 | D _{MAX} ≤ 700 Mbps | 1.8 | _ | _ | _ | _ | _ | _ | |), (9) | _ | _ | _ | 300 | _ | _ | 1 | D _{MAX} > 700 Mbps | 1.6 | _ | _ | _ | _ | _ | _ | #### Notes to Table 22: - (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps. - (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V. - (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V. - (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps. - (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology. - (6) RL range: $90 \le RL \le 110 \Omega$. - (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18. - (8) The minimum VID value is applicable over the entire common mode range, VCM. - (9) LVPECL is only supported on dedicated clock input pins. - (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$ ## **Power Consumption** Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature. Electrical Characteristics Page 17 You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 18 Switching Characteristics # **Switching Characteristics** This section provides performance characteristics of the Stratix V core and periphery blocks. These characteristics can be designated as Preliminary or Final. - Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary." - Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables. # **Transceiver Performance Specifications** This section describes transceiver performance specifications. Table 23 lists the Stratix V GX and GS transceiver specifications. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 1 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trar | sceive
Grade | r Speed
2 | Transceiver Speed
Grade 3 | | | Unit | |---|---|-------|---|--------------|----------|-----------------|--------------|------------------------------|--------------------|-----|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | | | | | | | | | | | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V | 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL | | | | | | | | | | Statiuatus | RX reference clock pin | | | 1.4-V PCMI | _, 1.5-V | PCML, | 2.5-V PCM | L, LVPE | , LVPECL, and LVDS | | | | Input Reference
Clock Frequency
(CMU PLL) (8) | _ | 40 | _ | 710 | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference
Clock Frequency
(ATX PLL) (8) | _ | 100 | _ | 710 | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise
time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ne | | Fall time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ps | | Duty cycle | _ | 45 | | 55 | 45 | _ | 55 | 45 | | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express®
(PCIe®) | 30 | _ | 33 | 30 | _ | 33 | 30 | _ | 33 | kHz | Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | | | | - | 1.4-V ar | nd 1.5-V PC | ML | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Switching Characteristics Page 25 Table 24 shows the maximum transmitter data rate for the clock network. Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1) | | | ATX PLL | | | CMU PLL (2) |) | | fPLL | | |-----------------------------------|----------------------------------|--------------------------|--|----------------------------------|--------------------------|-------------------------|----------------------------------|--------------------------|-------------------------| | Clock Network | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | | x1 ⁽³⁾ | 14.1 | _ | 6 | 12.5 | _ | 6 | 3.125 | _ | 3 | | x6 ⁽³⁾ | _ | 14.1 | 6 | _ | 12.5 | 6 | _ | 3.125 | 6 | | x6 PLL
Feedback ⁽⁴⁾ | _ | 14.1 | Side-
wide | _ | 12.5 | Side-
wide | _ | _ | _ | | xN (PCIe) | _ | 8.0 | 8 | _ | 5.0 | 8 | _ | _ | _ | | xN (Native PHY IP) | 8.0 | 8.0 | Up to 13
channels
above
and
below
PLL | 7.99 | 7.99 | Up to 13 channels above | 3.125 | 3.125 | Up to 13 channels above | | AN (NAUVE FITTIF) | П | 8.01 to
9.8304 | Up to 7
channels
above
and
below
PLL | · 7.55 | 7.88 | and
below
PLL | 3.123 | 3.123 | and
below
PLL | #### Notes to Table 24: ⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation. ⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance. ⁽³⁾ Channel span is within a transceiver bank. ⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP. Switching Characteristics Page 27 Table 26 shows the approximate maximum data rate using the 10G PCS. Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1) | Mode ⁽²⁾ | Transceiver | PMA Width | 64 | 40 | 40 | 40 | 32 | 32 | | |---------------------|------------------------|--|------|-------|--------|---------|----------|-------|--| | Widue (2) | Speed Grade | PCS Width | 64 | 66/67 | 50 | 40 | 64/66/67 | 32 | | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 14.1 | 14.1 | 10.69 | 14.1 | 13.6 | 13.6 | | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 12.5 | 12.5 | | | 2 | ۷ | C3, I3, I3L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 10.88 | 10.88 | | | FIFO or
Register | | C1, C2, C2L, I2, I2L
core speed grade | | | | | | | | | | 3 | C3, I3, I3L
core speed grade | | | 8.5 | Gbps | | | | | | C4, I4 core speed grad | | | | | | | | | | | | I3YY
core speed grade | | | 10.312 | 25 Gbps | | | | #### Notes to Table 26: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | 5 | Transceive
Speed Grade | | | Transceive
peed Grade | | Unit | |--|--|-----------|---------------------------|-------------|------------------------|--------------------------|--------------|------------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | • | • | • | • | • | • | • | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | Standards | RX reference clock pin | | L, and LVDS | ; | | | | | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | ps | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | | 1050/1000 | 2) | | 1050/1000 | 2) | mV | | | RX reference
clock pin | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | Switching Characteristics Page 31 Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$ | Symbol/ | Conditions | S | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|---|--------|--------------------------|--------------|--------------|--------------------------|-------------|----------| | Description | | Min | Тур | Max | Min | Тур | Max | 1 | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | | | Transmitter REFCLK | 1 kHz | _ | _ | -90 | | _ | -90 | | | Phase Noise (622 | 10 kHz | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | MHz) ⁽¹⁸⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | | | | ≥1 MHz | | _ | -120 | _ | | -120 | 1 | | Transmitter REFCLK
Phase Jitter (100
MHz) ⁽¹⁵⁾ | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | ps (rms) | | RREF (17) | _ | _ | 1800
± 1% | _ | _ | 1800
± 1% | _ | Ω | | Transceiver Clocks | | | | | | | | | | fixedclk clock
frequency | PCIe
Receiver
Detect | _ | 100 or
125 | _ | _ | 100 or
125 | _ | MHz | | Reconfiguration clock
(mgmt_clk_clk)
frequency | | 100 | _ | 125 | 100 | | 125 | MHz | | Receiver | | | | | | | | | | Supported I/O
Standards | _ | | 1.4-V PCML | , 1.5-V PCML | _, 2.5-V PCI | ML, LVPEC | L, and LVDS | 6 | | Data rate
(Standard PCS) (21) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) (21) | GX channels | 600 | _ | 12,500 | 600 | _ | 12,500 | Mbps | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Absolute V _{MAX} for a receiver pin ⁽³⁾ | GT channels | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | GT channels | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-to-peak | GT channels | | _ | 1.6 | _ | | 1.6 | V | | differential input
voltage V _{ID} (diff
p-p)
before device
configuration ⁽²⁰⁾ | GX channels | | | | (8) | | | | | | GT channels | | | | | | | | | Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20) | $V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$ | _ | _ | 2.2 | _ | _ | 2.2 | V | | Johnguration 7, 17 | GX channels | | | <u> </u> | (8) | | • | • | | Minimum differential | GT channels | 200 | _ | _ | 200 | | _ | mV | | eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾ | GX channels | | | | (8) | | | | Switching Characteristics Page 33 Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Differential on-chip | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | termination resistors | GX channels | | | | (8) | | ' | | | \/ (AO a a a d\) | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | V _{OCM} (AC coupled) | GX channels | | | | (8) | | ' | | | D'a a /Fall d'acc | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | I | | | | Intra-differential pair
skew | GX channels | | | | (8) | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | CMU PLL | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | - | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | • | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | <u> </u> | 1 | _ | _ | μs | Page 34 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (1) | Symbol/
Description | Conditions | Transceiver
Speed Grade 2 | | | T
Sp | Unit | | | |----------------------------|------------|------------------------------|-----|-----|---------|------|-----|----| | Description | | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 28: - (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level. - (3) The device cannot tolerate prolonged operation at this absolute maximum. - (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (6) Refer to Figure 6 for the GT channel DC gain curves. - (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications. - (9) t_{LTB} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (10) tLTD is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high. - (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (13) tpll powerdown is the PLL powerdown minimum pulse width. - (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (17) For ES devices, RREF is 2000 Ω ±1%. - (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (20) Refer to Figure 4. - (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (22) This supply follows VCCR_GXB for both GX and GT channels. - (23) When you use fPLL as a TXPLL of the transceiver. Page 40 Switching Characteristics Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |--|---|------|---------|--|-----------| | → (3) (4) | Input clock cycle-to-cycle jitter (f _{REF} ≥ 100 MHz) | _ | _ | 0.15 | UI (p-p) | | t _{INCCJ} (3), (4) | Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz) | -750 | | +750 | ps (p-p) | | + (5) | Period Jitter for dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 ⁽¹⁾ | ps (p-p) | | t _{OUTPJ_DC} (5) | Period Jitter for dedicated clock output (f _{OUT} < 100 MHz) | _ | _ | 17.5 ⁽¹⁾ | mUI (p-p) | | + (5) | Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 250 ⁽¹¹⁾ ,
175 ⁽¹²⁾ | ps (p-p) | | t _{FOUTPJ_DC} (5) | Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz) | _ | _ | 25 ⁽¹¹⁾ ,
17.5 ⁽¹²⁾ | mUI (p-p) | | + (5) | Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} \ge 100 \text{ MHz})$ | _ | _ | 175 | ps (p-p) | | t _{outccj_dc} (5) | Cycle-to-Cycle Jitter for a dedicated clock output (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | + (5) | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 250 ⁽¹¹⁾ ,
175 ⁽¹²⁾ | ps (p-p) | | t _{FOUTCCJ_DC} ⁽⁵⁾ | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)+ | _ | _ | 25 ⁽¹¹⁾ ,
17.5 ⁽¹²⁾ | mUI (p-p) | | t _{OUTPJ_IO} (5), | Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 | ps (p-p) | | (8) | Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{FOUTPJ 10} (5), | Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 (10) | ps (p-p) | | (8), (11) | Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 (10) | mUI (p-p) | | t _{outccj_10} (5), | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 | ps (p-p) | | (8) | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz) | _ | _ | 60 (10) | mUI (p-p) | | t _{ғоитссу_10} | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 (10) | ps (p-p) | | (8), (11) | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{CASC_OUTPJ_DC} | Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 | ps (p-p) | | (5), (6) | Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | f _{DRIFT} |
Frequency drift after PFDENA is disabled for a duration of 100 μs | _ | _ | ±10 | % | | dK _{BIT} | Bit number of Delta Sigma Modulator (DSM) | 8 | 24 | 32 | Bits | | k _{VALUE} | Numerator of Fraction | 128 | 8388608 | 2147483648 | _ | Page 50 Switching Characteristics Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2) | Speed Grade | Min | Max | Unit | |-------------|-----|-----|------| | C4,I4 | 8 | 16 | ps | #### Notes to Table 40: - (1) The typical value equals the average of the minimum and maximum values. - (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps. Table 41 lists the DQS phase shift error for Stratix V devices. Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1) | Number of DQS Delay
Buffers | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |--------------------------------|-----|------------------|-------------------|-------|------| | 1 | 28 | 28 | 30 | 32 | ps | | 2 | 56 | 56 | 60 | 64 | ps | | 3 | 84 | 84 | 90 | 96 | ps | | 4 | 112 | 112 | 120 | 128 | ps | #### Notes to Table 41: Table 42 lists the memory output clock jitter specifications for Stratix V devices. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3) | Clock | Parameter | Symbol | C 1 | | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |----------|------------------------------|------------------------|-----------------|-----|------------------|-----|----------------------|------|-------|------|------| | Network | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -50 | 50 | -50 | 50 | -55 | 55 | -55 | 55 | ps | | Regional | Cycle-to-cycle period jitter | t _{JIT(cc)} | -100 | 100 | -100 | 100 | -110 | 110 | -110 | 110 | ps | | | Duty cycle jitter | $t_{JIT(duty)}$ | -50 | 50 | -50 | 50 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | | Clock period jitter | t _{JIT(per)} | -75 | 75 | -75 | 75 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | Global | Cycle-to-cycle period jitter | t _{JIT(cc)} | -150 | 150 | -150 | 150 | -165 | 165 | -165 | 165 | ps | | | Duty cycle jitter | t _{JIT(duty)} | - 75 | 75 | - 75 | 75 | -90 | 90 | -90 | 90 | ps | ⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps. Configuration Specification Page 53 | Table 46. | JTAG Timino | Parameters a | nd Values | for Stratix V Devices | |-----------|-------------|--------------|-----------|-----------------------| |-----------|-------------|--------------|-----------|-----------------------| | Symbol | Description | Min | Max | Unit | |-------------------|--|-----|-------------------|------| | t _{JPH} | JTAG port hold time | 5 | _ | ns | | t _{JPCO} | JTAG port clock to output | _ | 11 ⁽¹⁾ | ns | | t _{JPZX} | JTAG port high impedance to valid output | _ | 14 ⁽¹⁾ | ns | | t _{JPXZ} | JTAG port valid output to high impedance | _ | 14 ⁽¹⁾ | ns | #### Notes to Table 46: - (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V. - (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming. # **Raw Binary File Size** For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices". Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices. Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) (4), (5) | |--------------|--------|------------------------------|--------------------------------|---------------------------------| | | ECCVAO | H35, F40, F35 ⁽²⁾ | 213,798,880 | 562,392 | | | 5SGXA3 | H29, F35 ⁽³⁾ | 137,598,880 | 564,504 | | | 5SGXA4 | _ | 213,798,880 | 563,672 | | | 5SGXA5 | _ | 269,979,008 | 562,392 | | | 5SGXA7 | _ | 269,979,008 | 562,392 | | Stratix V GX | 5SGXA9 | _ | 342,742,976 | 700,888 | | | 5SGXAB | _ | 342,742,976 | 700,888 | | | 5SGXB5 | _ | 270,528,640 | 584,344 | | | 5SGXB6 | _ | 270,528,640 | 584,344 | | | 5SGXB9 | _ | 342,742,976 | 700,888 | | | 5SGXBB | _ | 342,742,976 | 700,888 | | Ctuativ V CT | 5SGTC5 | _ | 269,979,008 | 562,392 | | Stratix V GT | 5SGTC7 | _ | 269,979,008 | 562,392 | | | 5SGSD3 | _ | 137,598,880 | 564,504 | | | FCCCD4 | F1517 | 213,798,880 | 563,672 | | Ctrativ V CC | 5SGSD4 | _ | 137,598,880 | 564,504 | | Stratix V GS | 5SGSD5 | _ | 213,798,880 | 563,672 | | | 5SGSD6 | _ | 293,441,888 | 565,528 | | | 5SGSD8 | _ | 293,441,888 | 565,528 | Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ### **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 66 Glossary Table 60. Glossary (Part 2 of 4) | Letter | Subject | Definitions | |------------------|-----------------------------------|--| |
G | | | | Н | _ | - | | 1 | | | | J | J
TAG Timing
Specifications | High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK TJPSU TJ | | K
L
M
N | _ | | | P | PLL
Specifications | Diagram of PLL Specifications (1) CLKOUT Pins Four Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs. | | Q | _ | - | | R | R _L | Receiver differential input discrete resistor (external to the Stratix V device). | | | | 1 | Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | Date | Version | Changes | |----------------|---------|---| | | | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60 | | May 2013 | 2.7 | ■ Added Table 24, Table 48 | | | | ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 | | February 2013 | 2.6 | ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46 | | , | | ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" | | | | ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35 | | | | ■ Added Table 33 | | | | ■ Added "Fast Passive Parallel Configuration Timing" | | D | 0.5 | ■ Added "Active Serial Configuration Timing" | | December 2012 | 2.5 | ■ Added "Passive Serial Configuration Timing" | | | | ■ Added "Remote System Upgrades" | | | | ■ Added "User Watchdog Internal Circuitry Timing Specification" | | | | ■ Added "Initialization" | | | | ■ Added "Raw Binary File Size" | | | | ■ Added Figure 1, Figure 2, and Figure 3. | | June 2012 | 2.4 | ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59. | | | | Various edits throughout to fix bugs. | | | | ■ Changed title of document to Stratix V Device Datasheet. | | | | ■ Removed document from the Stratix V handbook and made it a separate document. | | February 2012 | 2.3 | ■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | December 2011 | 2.2 | ■ Added Table 2–31. | | December 2011 | 2.2 | ■ Updated Table 2–28 and Table 2–34. | | Navarahar 0044 | 11 2.1 | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices. | | November 2011 | | ■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | | ■ Various edits throughout to fix SPRs. | | | | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24. | | May 2011 | 2.0 | ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title. | | | | ■ Chapter moved to Volume 1. | | | | ■ Minor text edits. | | | | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | December 2010 | 1.1 | Converted chapter to the new template. | | | | ■ Minor text edits. | | July 2010 | 1.0 | Initial release. |