



Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                            |
|--------------------------------|------------------------------------------------------------|
| Product Status                 | Obsolete                                                   |
| Number of LABs/CLBs            | 185000                                                     |
| Number of Logic Elements/Cells | 490000                                                     |
| Total RAM Bits                 | 46080000                                                   |
| Number of I/O                  | 600                                                        |
| Number of Gates                | -                                                          |
| Voltage - Supply               | 0.82V ~ 0.88V                                              |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                         |
| Package / Case                 | 1517-BBGA, FCBGA                                           |
| Supplier Device Package        | 1517-FBGA (40x40)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/5sgxma5n3f40i3n |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics Page 5

## **Recommended Operating Conditions**

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

| Symbol                                                                                                                     | Description                                                                                            | Condition  | Min <sup>(4)</sup> | Тур  | Max <sup>(4)</sup> | Unit |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|--------------------|------|--------------------|------|
|                                                                                                                            | Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)                  | _          | 0.87               | 0.9  | 0.93               | V    |
| V <sub>CC</sub>                                                                                                            | Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3) | _          | 0.82               | 0.85 | 0.88               | V    |
| V <sub>CCPT</sub>                                                                                                          | Power supply for programmable power technology                                                         | _          | 1.45               | 1.50 | 1.55               | V    |
| V <sub>CC_AUX</sub>                                                                                                        | Auxiliary supply for the programmable power technology                                                 | _          | 2.375              | 2.5  | 2.625              | V    |
| V (1)                                                                                                                      | I/O pre-driver (3.0 V) power supply                                                                    |            | 2.85               | 3.0  | 3.15               | V    |
| VCCPD (1)                                                                                                                  | I/O pre-driver (2.5 V) power supply                                                                    |            | 2.375              | 2.5  | 2.625              | V    |
|                                                                                                                            | I/O buffers (3.0 V) power supply                                                                       | _          | 2.85               | 3.0  | 3.15               | ٧    |
|                                                                                                                            | I/O buffers (2.5 V) power supply                                                                       | _          | 2.375              | 2.5  | 2.625              | V    |
|                                                                                                                            | I/O buffers (1.8 V) power supply                                                                       | _          | 1.71               | 1.8  | 1.89               | ٧    |
| V <sub>CC_AUX</sub> V <sub>CCPD</sub> (1) V <sub>CCIO</sub> V <sub>CCPGM</sub> V <sub>CCA_FPLL</sub> V <sub>CCD_FPLL</sub> | I/O buffers (1.5 V) power supply                                                                       | _          | 1.425              | 1.5  | 1.575              | V    |
|                                                                                                                            | I/O buffers (1.35 V) power supply                                                                      |            | 1.283              | 1.35 | 1.45               | V    |
|                                                                                                                            | I/O buffers (1.25 V) power supply                                                                      |            | 1.19               | 1.25 | 1.31               | V    |
|                                                                                                                            | I/O buffers (1.2 V) power supply                                                                       | _          | 1.14               | 1.2  | 1.26               | V    |
|                                                                                                                            | Configuration pins (3.0 V) power supply                                                                |            | 2.85               | 3.0  | 3.15               | V    |
| $V_{CCPGM}$                                                                                                                | Configuration pins (2.5 V) power supply                                                                | _          | 2.375              | 2.5  | 2.625              | V    |
|                                                                                                                            | Configuration pins (1.8 V) power supply                                                                | _          | 1.71               | 1.8  | 1.89               | V    |
| V <sub>CCA_FPLL</sub>                                                                                                      | PLL analog voltage regulator power supply                                                              |            | 2.375              | 2.5  | 2.625              | V    |
| V <sub>CCD_FPLL</sub>                                                                                                      | PLL digital voltage regulator power supply                                                             |            | 1.45               | 1.5  | 1.55               | V    |
| V <sub>CCBAT</sub> (2)                                                                                                     | Battery back-up power supply (For design security volatile key register)                               | _          | 1.2                | _    | 3.0                | V    |
| V <sub>I</sub>                                                                                                             | DC input voltage                                                                                       | _          | -0.5               | _    | 3.6                | V    |
| V <sub>0</sub>                                                                                                             | Output voltage                                                                                         | _          | 0                  | _    | V <sub>CCIO</sub>  | V    |
| т.                                                                                                                         | Operating junction temperature                                                                         | Commercial | 0                  | _    | 85                 | °C   |
| T <sub>J</sub>                                                                                                             | Operating junction temperature                                                                         | Industrial | -40                | _    | 100                | °C   |

Page 6 Electrical Characteristics

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

| Symbol                   | Description             | Condition    | Min <sup>(4)</sup> | Тур | Max <sup>(4)</sup> | Unit |
|--------------------------|-------------------------|--------------|--------------------|-----|--------------------|------|
| t Dower supply romp time | Power supply ramp time  | Standard POR | 200 μs             | _   | 100 ms             | _    |
| LRAMP                    | Fower supply rainp line | Fast POR     | 200 μs             | _   | 4 ms               | _    |

#### Notes to Table 6:

- (1)  $V_{CCPD}$  must be 2.5 V when  $V_{CCIO}$  is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V.  $V_{CCPD}$  must be 3.0 V when  $V_{CCIO}$  is 3.0 V.
- (2) If you do not use the design security feature in Stratix V devices, connect V<sub>CCBAT</sub> to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V<sub>CCBAT</sub>. Stratix V devices will not exit POR if V<sub>CCBAT</sub> stays at logic low.
- (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.
- (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

| Symbol                | Description                                                                                   | Devices    | Minimum <sup>(4)</sup> | Typical | Maximum <sup>(4)</sup> | Unit |
|-----------------------|-----------------------------------------------------------------------------------------------|------------|------------------------|---------|------------------------|------|
| V <sub>CCA_GXBL</sub> | Transceiver channel PLL power supply (left                                                    | GX, GS, GT | 2.85                   | 3.0     | 3.15                   | V    |
| (1), (3)              | side)                                                                                         | ७४, ७७, ७१ | 2.375                  | 2.5     | 2.625                  | V    |
| V <sub>CCA_GXBR</sub> | Transceiver channel PLL power supply (right                                                   | GX, GS     | 2.85                   | 3.0     | 3.15                   | V    |
| $(1), (\overline{3})$ | side)                                                                                         | রম, রহ     | 2.375                  | 2.5     | 2.625                  | V    |
| V <sub>CCA_GTBR</sub> | Transceiver channel PLL power supply (right side)                                             | GT         | 2.85                   | 3.0     | 3.15                   | V    |
|                       | Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)               | GX, GS, GT | 0.87                   | 0.9     | 0.93                   | V    |
| V <sub>CCHIP_L</sub>  | Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)  | GX, GS, GT | 0.82                   | 0.85    | 0.88                   | V    |
|                       | Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)              | GX, GS, GT | 0.87                   | 0.9     | 0.93                   | V    |
| $V_{\text{CCHIP}\_R}$ | Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82                   | 0.85    | 0.88                   | V    |
|                       | Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)                   | GX, GS, GT | 0.87                   | 0.9     | 0.93                   | V    |
| V <sub>CCHSSI_L</sub> | Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)      | GX, GS, GT | 0.82                   | 0.85    | 0.88                   | V    |
|                       | Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)                  | GX, GS, GT | 0.87                   | 0.9     | 0.93                   | V    |
| V <sub>CCHSSI_R</sub> | Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)     | GX, GS, GT | 0.82                   | 0.85    | 0.88                   | V    |
|                       |                                                                                               |            | 0.82                   | 0.85    | 0.88                   |      |
| V <sub>CCR_GXBL</sub> | Receiver analog power supply (left side)                                                      | GX, GS, GT | 0.87                   | 0.90    | 0.93                   | V    |
| (2)                   | Treceiver arialog power supply (left side)                                                    | un, us, ui | 0.97                   | 1.0     | 1.03                   | v    |
|                       |                                                                                               |            | 1.03                   | 1.05    | 1.07                   |      |

Electrical Characteristics Page 7

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2)

| Symbol                | Description                                                  | Devices    | Minimum <sup>(4)</sup> | Typical | Maximum <sup>(4)</sup> | Unit |
|-----------------------|--------------------------------------------------------------|------------|------------------------|---------|------------------------|------|
|                       |                                                              |            | 0.82                   | 0.85    | 0.88                   |      |
| V <sub>CCR_GXBR</sub> | Receiver analog power supply (right side)                    | GX, GS, GT | 0.87                   | 0.90    | 0.93                   | V    |
| (2)                   | neceiver analog power supply (right side)                    | ux, us, u1 | 0.97                   | 1.0     | 1.03                   | v    |
|                       |                                                              |            | 1.03                   | 1.05    | 1.07                   |      |
| V <sub>CCR_GTBR</sub> | Receiver analog power supply for GT channels (right side)    | GT         | 1.02                   | 1.05    | 1.08                   | V    |
|                       |                                                              |            | 0.82                   | 0.85    | 0.88                   |      |
| V <sub>CCT_GXBL</sub> | Transmitter analog newer cupply (left side)                  | GX, GS, GT | 0.87                   | 0.90    | 0.93                   | V    |
| (2)                   | Transmitter analog power supply (left side)                  | ux, us, u1 | 0.97                   | 1.0     | 1.03                   | V    |
|                       |                                                              |            | 1.03                   | 1.05    | 1.07                   |      |
|                       |                                                              |            | 0.82                   | 0.85    | 0.88                   |      |
| V <sub>CCT_GXBR</sub> | Transmitter analog power supply (right side)                 | GX, GS, GT | 0.87                   | 0.90    | 0.93                   | V    |
| (2)                   | Transmitter analog power supply (right side)                 | ux, us, u1 | 0.97                   | 1.0     | 1.03                   | V    |
|                       |                                                              |            | 1.03                   | 1.05    | 1.07                   |      |
| V <sub>CCT_GTBR</sub> | Transmitter analog power supply for GT channels (right side) | GT         | 1.02                   | 1.05    | 1.08                   | V    |
| V <sub>CCL_GTBR</sub> | Transmitter clock network power supply                       | GT         | 1.02                   | 1.05    | 1.08                   | V    |
| V <sub>CCH_GXBL</sub> | Transmitter output buffer power supply (left side)           | GX, GS, GT | 1.425                  | 1.5     | 1.575                  | V    |
| V <sub>CCH_GXBR</sub> | Transmitter output buffer power supply (right side)          | GX, GS, GT | 1.425                  | 1.5     | 1.575                  | V    |

#### Notes to Table 7:

<sup>(1)</sup> This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

<sup>(2)</sup> Refer to Table 8 to select the correct power supply level for your design.

<sup>(3)</sup> When using ATX PLLs, the supply must be 3.0 V.

<sup>(4)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Page 18 Switching Characteristics

# **Switching Characteristics**

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

# **Transceiver Performance Specifications**

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 1 of 7)

| Symbol/                                             | Conditions                                                        | Trai  | nsceive<br>Grade  | r Speed<br>1 | Trar     | Transceiver Speed<br>Grade 2 |                     |           | Transceiver Speed<br>Grade 3 |            |          |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------|-------|-------------------|--------------|----------|------------------------------|---------------------|-----------|------------------------------|------------|----------|--|--|
| Description                                         |                                                                   | Min   | Тур               | Max          | Min      | Тур                          | Max                 | Min       | Тур                          | Max        |          |  |  |
| Reference Clock                                     |                                                                   |       |                   |              |          |                              |                     |           |                              |            |          |  |  |
| Supported I/O<br>Standards                          | Dedicated<br>reference<br>clock pin                               | 1.2-V | PCML,             | 1.4-V PCM    | L, 1.5-V | PCML,                        | , 2.5-V PCN<br>HCSL | 1L, Diffe | rential                      | LVPECL, L\ | /DS, and |  |  |
| Statiuatus                                          | RX reference clock pin                                            |       |                   | 1.4-V PCMI   | _, 1.5-V | PCML,                        | 2.5-V PCM           | L, LVPE   | CL, and                      | d LVDS     |          |  |  |
| Input Reference<br>Clock Frequency<br>(CMU PLL) (8) | _                                                                 | 40    | 40 — 710 40 — 710 |              | 710      | 40                           | _                   | 710       | MHz                          |            |          |  |  |
| Input Reference<br>Clock Frequency<br>(ATX PLL) (8) | _                                                                 | 100   | _                 | 710          | 100      | _                            | 710                 | 100       | _                            | 710        | MHz      |  |  |
| Rise time                                           | Measure at<br>±60 mV of<br>differential<br>signal <sup>(26)</sup> | _     | _                 | 400          | _        | _                            | 400                 | _         | _                            | 400        | ne       |  |  |
| Fall time                                           | Measure at<br>±60 mV of<br>differential<br>signal <sup>(26)</sup> | _     | _                 | 400          | _        | _                            | 400                 | _         | _                            | 400        | ps       |  |  |
| Duty cycle                                          | _                                                                 | 45    |                   | 55           | 45       | _                            | 55                  | 45        |                              | 55         | %        |  |  |
| Spread-spectrum<br>modulating clock<br>frequency    | PCI Express®<br>(PCIe®)                                           | 30    | _                 | 33           | 30       | _                            | 33                  | 30        | _                            | 33         | kHz      |  |  |

Page 20 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 3 of 7)

| Symbol/                                                                                                                      | Conditions                                                                  | Trai                                                | nsceive<br>Grade | r Speed<br>1 | Trai     | sceive<br>Grade | r Speed<br>2 | Trar    | sceive<br>Grade | er Speed<br>e 3 | Unit |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|------------------|--------------|----------|-----------------|--------------|---------|-----------------|-----------------|------|
| Description                                                                                                                  |                                                                             | Min   Typ   Max   Min   Typ   Max   Min   Typ   Max |                  |              |          |                 |              |         |                 |                 |      |
| Reconfiguration<br>clock<br>(mgmt_clk_clk)<br>frequency                                                                      | _                                                                           | 100                                                 | _                | 125          | 100      | _               | 125          | 100     | _               | 125             | MHz  |
| Receiver                                                                                                                     |                                                                             |                                                     |                  |              |          |                 |              |         |                 |                 |      |
| Supported I/O<br>Standards                                                                                                   | _                                                                           |                                                     |                  | 1.4-V PCMI   | _, 1.5-V | PCML,           | 2.5-V PCM    | L, LVPE | CL, and         | d LVDS          |      |
| Data rate<br>(Standard PCS)                                                                                                  | _                                                                           | 600                                                 | _                | 12200        | 600      |                 | 12200        | 600     | _               | 10312.5         | Mbps |
| Data rate<br>(10G PCS) (9), (23)                                                                                             | _                                                                           | 600                                                 | _                | 14100        | 600      | _               | 12500        | 600     | _               | 10312.5         | Mbps |
| Absolute V <sub>MAX</sub> for a receiver pin <sup>(5)</sup>                                                                  | _                                                                           | _                                                   | _                | 1.2          | _        | _               | 1.2          | _       | _               | 1.2             | V    |
| Absolute V <sub>MIN</sub> for a receiver pin                                                                                 | _                                                                           | -0.4                                                | _                | _            | -0.4     | _               | _            | -0.4    | _               | _               | V    |
| Maximum peak-<br>to-peak<br>differential input<br>voltage V <sub>ID</sub> (diff p-<br>p) before device<br>configuration (22) | _                                                                           | _                                                   | _                | 1.6          | _        | _               | 1.6          | _       | _               | 1.6             | V    |
| Maximum peak-<br>to-peak                                                                                                     | $V_{CCR\_GXB} = 1.0 \text{ V}/1.05 \text{ V} $ $(V_{ICM} = 0.70 \text{ V})$ | _                                                   | _                | 2.0          | _        | _               | 2.0          | _       | _               | 2.0             | V    |
| differential input voltage V <sub>ID</sub> (diff p-p) after device configuration (18),                                       | $V_{\text{CCR\_GXB}} = 0.90 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$   |                                                     |                  | 2.4          | _        |                 | 2.4          | _       | _               | 2.4             | V    |
| (22)                                                                                                                         | $V_{CCR\_GXB} = 0.85 \text{ V}$ $(V_{ICM} = 0.6 \text{ V})$                 | _                                                   | _                | 2.4          | _        | _               | 2.4          | _       | _               | 2.4             | V    |
| Minimum differential eye opening at receiver serial input pins (6), (22), (27)                                               | _                                                                           | 85                                                  | _                | _            | 85       | _               | _            | 85      | _               | _               | mV   |

Page 26 Switching Characteristics

Table 25 shows the approximate maximum data rate using the standard PCS.

Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3)

| Mada (2)            | Transceiver | PMA Width                                | 20      | 20      | 16      | 16      | 10  | 10                                     | 8    | 8    |
|---------------------|-------------|------------------------------------------|---------|---------|---------|---------|-----|----------------------------------------|------|------|
| Mode <sup>(2)</sup> | Speed Grade | PCS/Core Width                           | 40      | 20      | 32      | 16      | 20  | 10                                     | 16   | 8    |
|                     | 1           | C1, C2, C2L, I2, I2L<br>core speed grade | 12.2    | 11.4    | 9.76    | 9.12    | 6.5 | 5.8                                    | 5.2  | 4.72 |
|                     | 2           | C1, C2, C2L, I2, I2L core speed grade    | 12.2    | 11.4    | 9.76    | 9.12    | 6.5 | 5.8                                    | 5.2  | 4.72 |
|                     | 2           | C3, I3, I3L<br>core speed grade          | 9.8     | 9.0     | 7.84    | 7.2     | 5.3 | 4.7                                    | 4.24 | 3.76 |
| FIFO                |             | C1, C2, C2L, I2, I2L core speed grade    | 8.5     | 8.5     | 8.5     | 8.5     | 6.5 | 5.8                                    | 5.2  | 4.72 |
|                     | 3           | I3YY<br>core speed grade                 | 10.3125 | 10.3125 | 7.84    | 7.2     | 5.3 | 4.7                                    | 4.24 | 3.76 |
|                     | 3           | C3, I3, I3L<br>core speed grade          | 8.5     | 8.5     | 7.84    | 7.2     | 5.3 | 4.7                                    | 4.24 | 3.76 |
|                     |             | C4, I4<br>core speed grade               | 8.5     | 8.2     | 7.04    | 6.56    | 4.8 | 4.7 4.24 3<br>4.2 3.84 3<br>5.7 4.88 4 | 3.44 |      |
|                     | 1           | C1, C2, C2L, I2, I2L<br>core speed grade | 12.2    | 11.4    | 9.76    | 9.12    | 6.1 | 5.7                                    | 4.88 | 4.56 |
|                     | 2           | C1, C2, C2L, I2, I2L<br>core speed grade | 12.2    | 11.4    | 9.76    | 9.12    | 6.1 | 5.7                                    | 4.88 | 4.56 |
|                     | 2           | C3, I3, I3L<br>core speed grade          | 9.8     | 9.0     | 7.92    | 7.2     | 4.9 | 4.5                                    | 3.96 | 3.6  |
| Register            |             | C1, C2, C2L, I2, I2L core speed grade    | 10.3125 | 10.3125 | 10.3125 | 10.3125 | 6.1 | 5.7                                    | 4.88 | 4.56 |
|                     | 3           | I3YY<br>core speed grade                 | 10.3125 | 10.3125 | 7.92    | 7.2     | 4.9 | 4.5                                    | 3.96 | 3.6  |
|                     | 3           | C3, I3, I3L<br>core speed grade          | 8.5     | 8.5     | 7.92    | 7.2     | 4.9 | 4.5                                    | 3.96 | 3.6  |
|                     |             | C4, I4<br>core speed grade               | 8.5     | 8.2     | 7.04    | 6.56    | 4.4 | 4.1                                    | 3.52 | 3.28 |

#### Notes to Table 25:

<sup>(1)</sup> The maximum data rate is in Gbps.

<sup>(2)</sup> The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

<sup>(3)</sup> The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade.

Switching Characteristics Page 29

Figure 2 shows the differential transmitter output waveform.

Figure 2. Differential Transmitter Output Waveform

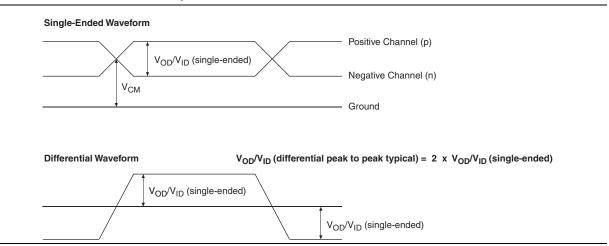



Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)



Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Page 30 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5)  $^{(1)}$ 

| Symbol/                                                        | Conditions                                             | 5         | Transceive<br>Speed Grade |              |                        | Transceive<br>peed Grade |              | Unit       |
|----------------------------------------------------------------|--------------------------------------------------------|-----------|---------------------------|--------------|------------------------|--------------------------|--------------|------------|
| Description                                                    |                                                        | Min       | Тур                       | Max          | Min                    | Тур                      | Max          |            |
| Reference Clock                                                | •                                                      | •         | •                         | •            | •                      | •                        | •            |            |
| Supported I/O<br>Standards                                     | Dedicated<br>reference<br>clock pin                    | 1.2-V PCN | /IL, 1.4-V PC             | ML, 1.5-V P  | CML, 2.5-V<br>and HCSL | PCML, Diffe              | rential LVPE | ECL, LVDS, |
| Standards                                                      | RX reference clock pin                                 |           | 1.4-V PCML                | ., 1.5-V PCN | IL, 2.5-V PC           | ML, LVPEC                | L, and LVDS  | <b>;</b>   |
| Input Reference Clock<br>Frequency (CMU<br>PLL) <sup>(6)</sup> | _                                                      | 40        | _                         | 710          | 40                     | _                        | 710          | MHz        |
| Input Reference Clock<br>Frequency (ATX PLL) (6)               | _                                                      | 100       | _                         | 710          | 100                    | _                        | 710          | MHz        |
| Rise time                                                      | 20% to 80%                                             | _         | _                         | 400          | _                      | _                        | 400          |            |
| Fall time                                                      | 80% to 20%                                             | _         | _                         | 400          | _                      | <u> </u>                 | 400          | ps         |
| Duty cycle                                                     | _                                                      | 45        | _                         | 55           | 45                     | _                        | 55           | %          |
| Spread-spectrum<br>modulating clock<br>frequency               | PCI Express<br>(PCIe)                                  | 30        | _                         | 33           | 30                     | _                        | 33           | kHz        |
| Spread-spectrum<br>downspread                                  | PCle                                                   | _         | 0 to -0.5                 | _            | _                      | 0 to -0.5                | _            | %          |
| On-chip termination resistors (19)                             | _                                                      | _         | 100                       | _            | _                      | 100                      | _            | Ω          |
| Absolute V <sub>MAX</sub> (3)                                  | Dedicated<br>reference<br>clock pin                    | _         | _                         | 1.6          | _                      | _                        | 1.6          | V          |
|                                                                | RX reference<br>clock pin                              | _         | _                         | 1.2          | _                      | _                        | 1.2          |            |
| Absolute V <sub>MIN</sub>                                      | _                                                      | -0.4      | _                         | _            | -0.4                   | _                        | _            | V          |
| Peak-to-peak<br>differential input<br>voltage                  | _                                                      | 200       | _                         | 1600         | 200                    | _                        | 1600         | mV         |
| V <sub>ICM</sub> (AC coupled)                                  | Dedicated<br>reference<br>clock pin                    |           | 1050/1000                 | 2)           |                        | 1050/1000                | 2)           | mV         |
|                                                                | RX reference clock pin                                 | 1         | .0/0.9/0.85               | (22)         | 1                      | .0/0.9/0.85              | (22)         | V          |
| V <sub>ICM</sub> (DC coupled)                                  | HCSL I/O<br>standard for<br>PCIe<br>reference<br>clock | 250       | _                         | 550          | 250                    | _                        | 550          | mV         |

Page 32 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5)  $^{(1)}$ 

| Symbol/                                                   | Conditions                       |     | Transceiver<br>Speed Grade |        |             | Transceive<br>peed Grade |        | Unit  |
|-----------------------------------------------------------|----------------------------------|-----|----------------------------|--------|-------------|--------------------------|--------|-------|
| Description                                               |                                  | Min | Тур                        | Max    | Min         | Тур                      | Max    |       |
| Differential on-chip termination resistors (7)            | GT channels                      | _   | 100                        | _      | _           | 100                      | _      | Ω     |
|                                                           | 85-Ω setting                     | _   | 85 ± 30%                   | _      | _           | 85<br>± 30%              | _      | Ω     |
| Differential on-chip termination resistors                | 100-Ω<br>setting                 | _   | 100<br>± 30%               | _      | _           | 100<br>± 30%             | _      | Ω     |
| for GX channels (19)                                      | 120-Ω<br>setting                 | _   | 120<br>± 30%               | _      | _           | 120<br>± 30%             | _      | Ω     |
|                                                           | 150-Ω<br>setting                 | _   | 150<br>± 30%               | _      | _           | 150<br>± 30%             | _      | Ω     |
| V <sub>ICM</sub> (AC coupled)                             | GT channels                      | _   | 650                        | _      | _           | 650                      | _      | mV    |
|                                                           | VCCR_GXB =<br>0.85 V or<br>0.9 V | _   | 600                        | _      | _           | 600                      | _      | mV    |
| VICM (AC and DC coupled) for GX Channels                  | VCCR_GXB = 1.0 V full bandwidth  | _   | 700                        | _      | _           | 700                      | _      | mV    |
| onanneis                                                  | VCCR_GXB = 1.0 V half bandwidth  | _   | 750                        | _      | _           | 750                      | _      | mV    |
| t <sub>LTR</sub> <sup>(9)</sup>                           | _                                | _   | _                          | 10     | _           | _                        | 10     | μs    |
| t <sub>LTD</sub> <sup>(10)</sup>                          | _                                | 4   | _                          | _      | 4           | _                        | _      | μs    |
| t <sub>LTD_manual</sub> (11)                              |                                  | 4   | _                          | _      | 4           | _                        | _      | μs    |
| t <sub>LTR_LTD_manual</sub> (12)                          |                                  | 15  | _                          | _      | 15          | _                        | _      | μs    |
| Run Length                                                | GT channels                      | _   | _                          | 72     | _           | _                        | 72     | CID   |
| nuii Leiigiii                                             | GX channels                      |     |                            |        | (8)         |                          |        |       |
| CDR PPM                                                   | GT channels                      | _   | _                          | 1000   | _           | _                        | 1000   | ± PPM |
| ODITITIVI                                                 | GX channels                      |     |                            |        | (8)         |                          |        |       |
| Programmable                                              | GT channels                      | _   | _                          | 14     | _           | _                        | 14     | dB    |
| equalization<br>(AC Gain) <sup>(5)</sup>                  | GX channels                      |     |                            |        | (8)         |                          |        |       |
| Programmable                                              | GT channels                      | _   | _                          | 7.5    | _           | _                        | 7.5    | dB    |
| DC gain <sup>(6)</sup>                                    | GX channels                      |     |                            |        | (8)         |                          |        |       |
| Differential on-chip termination resistors <sup>(7)</sup> | GT channels                      |     | 100                        | _      | _           | 100                      | _      | Ω     |
| Transmitter                                               | · '                              |     | •                          |        |             | •                        | •      |       |
| Supported I/O<br>Standards                                | _                                |     |                            | 1.4-V  | and 1.5-V F | PCML                     |        |       |
| Data rate<br>(Standard PCS)                               | GX channels                      | 600 | _                          | 8500   | 600         | _                        | 8500   | Mbps  |
| Data rate<br>(10G PCS)                                    | GX channels                      | 600 | _                          | 12,500 | 600         |                          | 12,500 | Mbps  |

Switching Characteristics Page 33

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5)  $^{(1)}$ 

| Symbol/                                                                              | Conditions                                                                                     |        | Transceive<br>peed Grade |        |        | Transceive<br>Deed Grade |                                | Unit |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------|--------------------------|--------|--------|--------------------------|--------------------------------|------|
| Description                                                                          | Symbol/ Description   Conditions   Speed Grade 2   Speed Grade 2   Min   Typ   Max   Min   Typ | Тур    | Max                      |        |        |                          |                                |      |
| Data rate                                                                            | GT channels                                                                                    | 19,600 | _                        | 28,050 | 19,600 | _                        | 25,780                         | Mbps |
| Differential on-chip                                                                 | GT channels                                                                                    | _      | 100                      | _      |        | 100                      | <u> </u>                       | Ω    |
| termination resistors                                                                | GX channels                                                                                    |        |                          | •      | (8)    |                          | <u>'</u>                       |      |
| \/                                                                                   | GT channels                                                                                    | _      | 500                      | _      | _      | 500                      | _                              | mV   |
| v <sub>ocm</sub> (AC coupled)                                                        | GX channels                                                                                    |        |                          | •      | (8)    |                          | <u>'</u>                       |      |
| Diag/Fall time                                                                       | GT channels                                                                                    | _      | 15                       | _      | _      | 15                       | _                              | ps   |
| KISe/Fall time                                                                       | GX channels                                                                                    |        | <u>I</u>                 |        | (8)    |                          |                                |      |
| Intra-differential pair<br>skew                                                      | GX channels                                                                                    |        |                          |        | (8)    |                          |                                |      |
| Intra-transceiver block transmitter channel-to-channel skew  Inter-transceiver block |                                                                                                |        |                          |        |        |                          |                                |      |
| transmitter channel-to-<br>channel skew (8)                                          |                                                                                                |        |                          |        |        |                          |                                |      |
| CMU PLL                                                                              |                                                                                                |        |                          |        |        |                          |                                |      |
| Supported Data Range                                                                 | _                                                                                              | 600    | _                        | 12500  | 600    | _                        | 8500                           | Mbps |
| t <sub>pll_powerdown</sub> (13)                                                      | _                                                                                              | 1      | _                        | _      | 1      | _                        | _                              | μs   |
| t <sub>pll_lock</sub> (14)                                                           | _                                                                                              | _      | _                        | 10     | _      | _                        | 10                             | μs   |
| ATX PLL                                                                              |                                                                                                |        |                          |        |        |                          |                                |      |
|                                                                                      |                                                                                                | 8000   | _                        | 12500  | 8000   | _                        | 8500                           | Mbps |
|                                                                                      | L=4                                                                                            | 4000   | _                        | 6600   | 4000   | _                        | 6600                           | Mbps |
| Supported Data Rate                                                                  | L=8                                                                                            | 2000   | _                        | 3300   | 2000   | _                        | 3300                           | Mbps |
| Range for GX Channels                                                                | Local/Central<br>Clock Divider                                                                 | 1000   | _                        | 1762.5 | 1000   | _                        | 1762.5                         | Mbps |
| Supported Data Rate<br>Range for GT Channels                                         |                                                                                                | 9800   | _                        | 14025  | 9800   | _                        | 12890                          | Mbps |
| t <sub>pll_powerdown</sub> (13)                                                      | _                                                                                              | 1      | _                        | _      | 1      | _                        | _                              | μs   |
| t <sub>pll_lock</sub> (14)                                                           | _                                                                                              | _      | _                        | 10     | _      | _                        | 10                             | μs   |
| fPLL                                                                                 |                                                                                                |        | •                        |        |        |                          |                                |      |
| Supported Data Range                                                                 | _                                                                                              | 600    | _                        |        | 600    | _                        | 3250/<br>3.125 <sup>(23)</sup> | Mbps |
| t <sub>pll_powerdown</sub> (13)                                                      | _                                                                                              | 1      | _                        | _      | 1      | _                        | _                              | μs   |

Switching Characteristics Page 47

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4)

| Cumbal                           | Conditions                                       |     | C1  |           | C2, | C2L, I | 2, I2L    | C3, | I3, I3I | ., I3YY   |     | C4,I4 | 4         | Mbps Mbps Unit |
|----------------------------------|--------------------------------------------------|-----|-----|-----------|-----|--------|-----------|-----|---------|-----------|-----|-------|-----------|----------------|
| Symbol                           | Conditions                                       | Min | Тур | Max       | Min | Тур    | Max       | Min | Тур     | Max       | Min | Тур   | Max       | UIIIL          |
|                                  | SERDES factor J<br>= 3 to 10                     | (6) | _   | (8)       | (6) | _      | (8)       | (6) | _       | (8)       | (6) | _     | (8)       | Mbps           |
| f <sub>HSDR</sub> (data<br>rate) | SERDES factor J<br>= 2,<br>uses DDR<br>Registers | (6) |     | (7)       | (6) | _      | (7)       | (6) | _       | (7)       | (6) |       | (7)       | Mbps           |
|                                  | SERDES factor J<br>= 1,<br>uses SDR<br>Register  | (6) | _   | (7)       | (6) | _      | (7)       | (6) | _       | (7)       | (6) |       | (7)       | Mbps           |
| DPA Mode                         |                                                  |     |     |           |     |        |           |     |         |           |     |       |           |                |
| DPA run<br>length                | _                                                | _   | _   | 1000<br>0 | _   |        | 1000<br>0 | _   | _       | 1000<br>0 | _   | _     | 1000<br>0 | UI             |
| Soft CDR mod                     | e                                                |     |     |           |     |        |           |     |         |           |     |       |           |                |
| Soft-CDR<br>PPM<br>tolerance     | _                                                | _   | _   | 300       | _   | _      | 300       | _   | _       | 300       | _   | _     | 300       | ±<br>PPM       |
| Non DPA Mode                     | е                                                |     |     |           |     |        |           |     |         |           |     |       |           |                |
| Sampling<br>Window               | _                                                | _   |     | 300       |     |        | 300       | _   |         | 300       | _   |       | 300       | ps             |

#### Notes to Table 36:

- (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.
- (2) When J = 1 or 2, bypass the SERDES block.
- (3) This only applies to DPA and soft-CDR modes.
- (4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.
- (5) This is achieved by using the **LVDS** clock network.
- (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- (8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.
- (9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (11) The F<sub>MAX</sub> specification is based on the fast clock used for serial data. The interface F<sub>MAX</sub> is also dependent on the parallel clock domain which is design-dependent and requires timing analysis.
- (12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA.
- (13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above.
- (14) Requires package skew compensation with PCB trace length.
- (15) Do not mix single-ended I/O buffer within LVDS I/O bank.
- (16) Chip-to-chip communication only with a maximum load of 5 pF.
- (17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Page 50 Switching Characteristics

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2)

| Speed Grade | Min | Max | Unit |
|-------------|-----|-----|------|
| C4,I4       | 8   | 16  | ps   |

#### Notes to Table 40:

- (1) The typical value equals the average of the minimum and maximum values.
- (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t<sub>DQS\_PSERR</sub>) for Stratix V Devices (1)

| Number of DQS Delay<br>Buffers | C1  | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit |
|--------------------------------|-----|------------------|-------------------|-------|------|
| 1                              | 28  | 28               | 30                | 32    | ps   |
| 2                              | 56  | 56               | 60                | 64    | ps   |
| 3                              | 84  | 84               | 90                | 96    | ps   |
| 4                              | 112 | 112              | 120               | 128   | ps   |

#### Notes to Table 41:

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3)

| Clock<br>Network | Parameter Symbo              |                        | C1              |     | C2, C2L | 2, C2L, I2, I2L |       | C3, I3, I3L,<br>I3YY |       | C4,I4 |    |
|------------------|------------------------------|------------------------|-----------------|-----|---------|-----------------|-------|----------------------|-------|-------|----|
| NEIWUIK          |                              |                        | Min             | Max | Min     | Max             | Min   | Max                  | Min   | Max   |    |
|                  | Clock period jitter          | t <sub>JIT(per)</sub>  | -50             | 50  | -50     | 50              | -55   | 55                   | -55   | 55    | ps |
| Regional         | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | -100            | 100 | -100    | 100             | -110  | 110                  | -110  | 110   | ps |
|                  | Duty cycle jitter            | $t_{JIT(duty)}$        | -50             | 50  | -50     | 50              | -82.5 | 82.5                 | -82.5 | 82.5  | ps |
|                  | Clock period jitter          | t <sub>JIT(per)</sub>  | -75             | 75  | -75     | 75              | -82.5 | 82.5                 | -82.5 | 82.5  | ps |
| Global           | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | -150            | 150 | -150    | 150             | -165  | 165                  | -165  | 165   | ps |
|                  | Duty cycle jitter            | t <sub>JIT(duty)</sub> | <del>-</del> 75 | 75  | -75     | 75              | -90   | 90                   | -90   | 90    | ps |

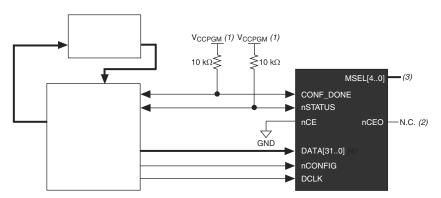
<sup>(1)</sup> This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps.

Page 56 Configuration Specification

Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2)

| Configuration<br>Scheme | Decompression | Design Security | DCLK-to-DATA[]<br>Ratio |
|-------------------------|---------------|-----------------|-------------------------|
|                         | Disabled      | Disabled        | 1                       |
| FPP ×32                 | Disabled      | Enabled         | 4                       |
|                         | Enabled       | Disabled        | 8                       |
|                         | Enabled       | Enabled         | 8                       |

#### Note to Table 49:


(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.



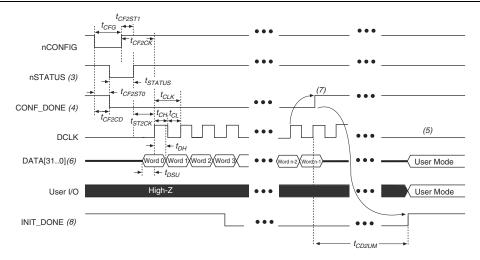
If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host



#### Notes to Figure 11:


- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V<sub>CCPGM</sub> must be high enough to meet the V<sub>IH</sub> specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V<sub>CCPGM</sub>.
- (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP  $\times 8$ , use DATA [7..0]. If you use FPP  $\times 16$ , use DATA [15..0].

Configuration Specification Page 57

#### FPP Configuration Timing when DCLK-to-DATA [] = 1

Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.

Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2)



#### Notes to Figure 12:

- (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF\_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay.
- (4) After power-up, before and during configuration, CONF DONE is low.
- (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF\_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF\_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (8) After the option bit to enable the <code>INIT\_DONE</code> pin is configured into the device, the <code>INIT\_DONE</code> goes low.

Page 58 Configuration Specification

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

| Symbol                 | Parameter                                         | Minimum                                                    | Maximum              | Units |
|------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------|-------|
| t <sub>CF2CD</sub>     | nCONFIG low to CONF_DONE low                      | _                                                          | 600                  | ns    |
| t <sub>CF2ST0</sub>    | nconfig low to nstatus low                        | _                                                          | 600                  | ns    |
| t <sub>CFG</sub>       | nCONFIG low pulse width                           | 2                                                          | _                    | μS    |
| t <sub>STATUS</sub>    | nstatus low pulse width                           | 268                                                        | 1,506 <sup>(2)</sup> | μ\$   |
| t <sub>CF2ST1</sub>    | nCONFIG high to nSTATUS high                      | _                                                          | 1,506 <sup>(3)</sup> | μ\$   |
| t <sub>CF2CK</sub> (6) | nCONFIG high to first rising edge on DCLK         | 1,506                                                      | _                    | μ\$   |
| t <sub>ST2CK</sub> (6) | nSTATUS high to first rising edge of DCLK         | 2                                                          | _                    | μ\$   |
| t <sub>DSU</sub>       | DATA[] setup time before rising edge on DCLK      | 5.5                                                        | _                    | ns    |
| t <sub>DH</sub>        | DATA[] hold time after rising edge on DCLK        | 0                                                          | _                    | ns    |
| t <sub>CH</sub>        | DCLK high time                                    | $0.45 \times 1/f_{MAX}$                                    | _                    | S     |
| t <sub>CL</sub>        | DCLK low time                                     | $0.45 \times 1/f_{MAX}$                                    | _                    | S     |
| t <sub>CLK</sub>       | DCLK period                                       | 1/f <sub>MAX</sub>                                         | _                    | S     |
| f                      | DCLK frequency (FPP ×8/×16)                       | _                                                          | 125                  | MHz   |
| f <sub>MAX</sub>       | DCLK frequency (FPP ×32)                          | _                                                          | 100                  | MHz   |
| t <sub>CD2UM</sub>     | CONF_DONE high to user mode (4)                   | 175                                                        | 437                  | μS    |
| +                      | GOVER DOVER high to GUVERN anabled                | 4 × maximum                                                |                      |       |
| t <sub>CD2CU</sub>     | CONF_DONE high to CLKUSR enabled                  | DCLK period                                                | _                    | _     |
| t <sub>CD2UMC</sub>    | CONF_DONE high to user mode with CLKUSR option on | t <sub>CD2CU</sub> + (8576 × CLKUSR period) <sup>(5)</sup> | _                    | _     |

#### Notes to Table 50:

- (1) Use these timing parameters when the decompression and design security features are disabled.
- (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) This value is applicable if you do not delay configuration by externally holding the nstatus low.
- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t<sub>ST2CK</sub> specification. If nSTATUS is not monitored, follow the t<sub>CF2CK</sub> specification.

### FPP Configuration Timing when DCLK-to-DATA [] > 1

Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Glossary Page 65

Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2)

| Parameter | Available | Min        | Fast       | Model      |       |       |       | Slow M | lodel |             |       |      |
|-----------|-----------|------------|------------|------------|-------|-------|-------|--------|-------|-------------|-------|------|
| (1)       | Settings  | Offset (2) | Industrial | Commercial | C1    | C2    | C3    | C4     | 12    | 13,<br>13YY | 14    | Unit |
| D3        | 8         | 0          | 1.587      | 1.699      | 2.793 | 2.793 | 2.992 | 3.192  | 2.811 | 3.047       | 3.257 | ns   |
| D4        | 64        | 0          | 0.464      | 0.492      | 0.838 | 0.838 | 0.924 | 1.011  | 0.843 | 0.920       | 1.006 | ns   |
| D5        | 64        | 0          | 0.464      | 0.493      | 0.838 | 0.838 | 0.924 | 1.011  | 0.844 | 0.921       | 1.006 | ns   |
| D6        | 32        | 0          | 0.229      | 0.244      | 0.415 | 0.415 | 0.458 | 0.503  | 0.418 | 0.456       | 0.499 | ns   |

#### Notes to Table 58:

- (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.
- (2) Minimum offset does not include the intrinsic delay.

## **Programmable Output Buffer Delay**

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 59. Programmable Output Buffer Delay for Stratix V Devices (1)

| Symbol              | Parameter                  | Typical     | Unit |
|---------------------|----------------------------|-------------|------|
|                     |                            | 0 (default) | ps   |
| D                   | Rising and/or falling edge | 25          | ps   |
| D <sub>OUTBUF</sub> | delay                      | 50          | ps   |
|                     |                            | 75          | ps   |

#### Note to Table 59:

# **Glossary**

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

| Letter | Subject              | Definitions                                                                                                   |
|--------|----------------------|---------------------------------------------------------------------------------------------------------------|
| Α      |                      |                                                                                                               |
| В      | _                    | _                                                                                                             |
| С      |                      |                                                                                                               |
| D      | _                    | _                                                                                                             |
| E      | _                    |                                                                                                               |
|        | f <sub>HSCLK</sub>   | Left and right PLL input clock frequency.                                                                     |
| F      | f <sub>HSDR</sub>    | High-speed I/O block—Maximum and minimum <b>LVDS</b> data transfer rate (f <sub>HSDR</sub> = 1/TUI), non-DPA. |
|        | f <sub>HSDRDPA</sub> | High-speed I/O block—Maximum and minimum <b>LVDS</b> data transfer rate (f <sub>HSDRDPA</sub> = 1/TUI), DPA.  |

<sup>(1)</sup> You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Page 66 Glossary

Table 60. Glossary (Part 2 of 4)

| Letter           | Subject                       | Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н                | _                             | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J                | JTAG Timing<br>Specifications | High-speed I/O block—Deserialization factor (width of parallel data bus).  JTAG Timing Specifications:  TMS  TDI  TCK  TJPSU  TJ |
| K<br>L<br>M<br>N | _                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P                | PLL<br>Specifications         | Diagram of PLL Specifications (1)  CLKOUT Pins  Four Core Clock  Reconfigurable in User Mode  External Feedback  Note:  (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q                | _                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R                | R <sub>L</sub>                | Receiver differential input discrete resistor (external to the Stratix V device).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | <u> </u>                      | (5/10/10/10/10/10/10/10/10/10/10/10/10/10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Glossary Page 67

Table 60. Glossary (Part 3 of 4)

| Letter | Subject                                               | Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | SW (sampling window)                                  | Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown:  Bit Time  0.5 x TCCS RSKM Sampling Window (SW)  0.5 x TCCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S      | Single-ended<br>voltage<br>referenced I/O<br>standard | The JEDEC standard for <b>SSTL</b> and <b>HSTL</b> I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state.  The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing:  Single-Ended Voltage Referenced I/O Standard  VIHACO  VIHACO  VIHACO  VILLOCO  VI |
|        | t <sub>C</sub> TCCS (channel-                         | High-speed receiver and transmitter input and output clock period.  The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | to-channel-skew)                                      | measurement (refer to the <i>Timing Diagram</i> figure under <b>SW</b> in this table).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                       | High-speed I/O block—Duty cycle on the high-speed transmitter output clock.  Timing Unit Interval (TUI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T      | t <sub>DUTY</sub>                                     | The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_c/w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | t <sub>FALL</sub>                                     | Signal high-to-low transition time (80-20%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | t <sub>INCCJ</sub>                                    | Cycle-to-cycle jitter tolerance on the PLL clock input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | t <sub>OUTPJ_IO</sub>                                 | Period jitter on the general purpose I/O driven by a PLL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | t <sub>OUTPJ_DC</sub>                                 | Period jitter on the dedicated clock output driven by a PLL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | t <sub>RISE</sub>                                     | Signal low-to-high transition time (20-80%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U      | _                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Page 68 Glossary

### Table 60. Glossary (Part 4 of 4)

| Letter | Subject                | Definitions                                                                                                                                                      |
|--------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | V <sub>CM(DC)</sub>    | DC common mode input voltage.                                                                                                                                    |
|        | V <sub>ICM</sub>       | Input common mode voltage—The common mode of the differential signal at the receiver.                                                                            |
|        | V <sub>ID</sub>        | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.     |
|        | V <sub>DIF(AC)</sub>   | AC differential input voltage—Minimum AC input differential voltage required for switching.                                                                      |
|        | V <sub>DIF(DC)</sub>   | DC differential input voltage— Minimum DC input differential voltage required for switching.                                                                     |
|        | V <sub>IH</sub>        | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.                                            |
|        | V <sub>IH(AC)</sub>    | High-level AC input voltage                                                                                                                                      |
|        | V <sub>IH(DC)</sub>    | High-level DC input voltage                                                                                                                                      |
| V      | <b>V</b> <sub>IL</sub> | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.                                              |
|        | V <sub>IL(AC)</sub>    | Low-level AC input voltage                                                                                                                                       |
|        | V <sub>IL(DC)</sub>    | Low-level DC input voltage                                                                                                                                       |
|        | V <sub>OCM</sub>       | Output common mode voltage—The common mode of the differential signal at the transmitter.                                                                        |
|        | <b>V</b> <sub>OD</sub> | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. |
|        | V <sub>SWING</sub>     | Differential input voltage                                                                                                                                       |
|        | V <sub>X</sub>         | Input differential cross point voltage                                                                                                                           |
|        | <b>V</b> <sub>OX</sub> | Output differential cross point voltage                                                                                                                          |
| W      | W                      | High-speed I/O block—clock boost factor                                                                                                                          |
| Χ      |                        |                                                                                                                                                                  |
| Υ      |                        | _                                                                                                                                                                |
| Z      |                        |                                                                                                                                                                  |

Page 70 Document Revision History

Table 61. Document Revision History (Part 2 of 3)

| Date          | Version | Changes                                                                                                                                                                                                                       |
|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |         | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1.                                                                                                                                        |
|               |         | ■ Added the I3YY speed grade to the V <sub>CC</sub> description in Table 6.                                                                                                                                                   |
|               |         | ■ Added the I3YY speed grade to V <sub>CCHIP_L</sub> , V <sub>CCHIP_R</sub> , V <sub>CCHSSI_L</sub> , and V <sub>CCHSSI_R</sub> descriptions in Table 7.                                                                      |
|               |         | ■ Added 240-Ω to Table 11.                                                                                                                                                                                                    |
|               |         | ■ Changed CDR PPM tolerance in Table 23.                                                                                                                                                                                      |
|               |         | ■ Added additional max data rate for fPLL in Table 23.                                                                                                                                                                        |
|               |         | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25.                                                                                                                            |
|               |         | Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in<br>Table 26.                                                                                                                           |
|               |         | ■ Changed CDR PPM tolerance in Table 28.                                                                                                                                                                                      |
|               |         | ■ Added additional max data rate for fPLL in Table 28.                                                                                                                                                                        |
|               |         | ■ Changed the mode descriptions for MLAB and M20K in Table 33.                                                                                                                                                                |
|               |         | ■ Changed the Max value of f <sub>HSCLK_OUT</sub> for the C2, C2L, I2, I2L speed grades in Table 36.                                                                                                                          |
| November 2014 | 3.3     | ■ Changed the frequency ranges for C1 and C2 in Table 39.                                                                                                                                                                     |
|               |         | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47.                                                                                                                                                              |
|               |         | ■ Added note about nSTATUS to Table 50, Table 51, Table 54.                                                                                                                                                                   |
|               |         | ■ Changed the available settings in Table 58.                                                                                                                                                                                 |
|               |         | ■ Changed the note in "Periphery Performance".                                                                                                                                                                                |
|               |         | ■ Updated the "I/O Standard Specifications" section.                                                                                                                                                                          |
|               |         | ■ Updated the "Raw Binary File Size" section.                                                                                                                                                                                 |
|               |         | ■ Updated the receiver voltage input range in Table 22.                                                                                                                                                                       |
|               |         | ■ Updated the max frequency for the LVDS clock network in Table 36.                                                                                                                                                           |
|               |         | ■ Updated the DCLK note to Figure 11.                                                                                                                                                                                         |
|               |         | ■ Updated Table 23 VO <sub>CM</sub> (DC Coupled) condition.                                                                                                                                                                   |
|               |         | ■ Updated Table 6 and Table 7.                                                                                                                                                                                                |
|               |         | ■ Added the DCLK specification to Table 55.                                                                                                                                                                                   |
|               |         | ■ Updated the notes for Table 47.                                                                                                                                                                                             |
|               |         | ■ Updated the list of parameters for Table 56.                                                                                                                                                                                |
| November 2013 | 3.2     | ■ Updated Table 28                                                                                                                                                                                                            |
| November 2013 | 3.1     | ■ Updated Table 33                                                                                                                                                                                                            |
| November 2013 | 3.0     | ■ Updated Table 23 and Table 28                                                                                                                                                                                               |
| October 2013  | 2.9     | ■ Updated the "Transceiver Characterization" section                                                                                                                                                                          |
|               |         | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 |
| October 2013  | 2.8     | ■ Added Figure 1 and Figure 3                                                                                                                                                                                                 |
|               |         | ■ Added the "Transceiver Characterization" section                                                                                                                                                                            |
|               |         | ■ Removed all "Preliminary" designations.                                                                                                                                                                                     |