Intel - 5SGXMA7H2F35C3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	234720
Number of Logic Elements/Cells	622000
Total RAM Bits	51200000
Number of I/O	552
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxma7h2f35c3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
VI	DC input voltage	-0.5	3.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

		saring transitions				
Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit		
		3.8	100	%		
		3.85 64				
		3.9	36	%		
		3.95	21	%		
Vi (AC)	AC input voltage	4	12	%		
		4.05	7	%		
		4.1	4	%		
		4.15	2	%		
		4.2	1	%		

Table 5. Maximum Allowed Overshoot During Transitions

Figure 1. Stratix V Device Overshoot Duration

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
t _{RAMP}	Power supply ramp time	Standard POR	200 µs	_	100 ms	—
		Fast POR	200 µs		4 ms	

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Notes to Table 6:

(1) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.

(3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.

(4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit	
V _{CCA GXBL}	Transceiver channel PLL power supply (left		2.85	3.0	3.15	V	
(1), (3)	side)	un, us, ui	2.375	2.5	2.625	v	
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	CV CS	2.85	3.0	3.15	V	
(1), (3)	side)	ux, us	2.375	2.5	2.625	v	
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V	
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHIP_R}	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
			0.82	0.85	0.88		
V _{CCR_GXBL}	Receiver analog nower supply (left side)		0.87	0.90	0.93	V	
(2) _	Therefore analog power supply (left Slue)	GX, GS, G1	0.97	1.0	1.03		
			1.03	1.05	1.07		

			Resistance Tolerance					
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.8$ and 1.5 V	±30	±30	±40	±40	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%	
100-Ω R _D	Internal differential termination (100- Ω setting)	V _{CCPD} = 2.5 V	±25	±25	±25	±25	%	

Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 2 of 2)

Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change.

OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration.

Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big) \label{eq:ROCT}$$

Notes to Equation 1:

- (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power-up.
- (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of $\mathsf{R}_{\mathsf{SCAL}}$ with voltage.

Table 13 lists the on-chip termination variation after power-up calibration.

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2)
--

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.0297	
	OCT variation with voltage without recalibration	2.5	0.0344	%/mV
dR/dV		1.8	0.0499	
		1.5	0.0744	1
		1.2	0.1241	

I/O	V _{CCIO} (V)			V _{DIF(}	_{DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V	V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5* V _{CCI0}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCI0}	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCI0} - 0.12	0.5* V _{CCI0}	0.5*V _{CCI0} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	V _{CCI0} (V) ⁽¹⁰⁾			V _{ID} (mV) ⁽⁸⁾		V _{ICM(DC)} (V)			V _{od} (V) <i>(6)</i>			V _{OCM} (V) <i>(6)</i>						
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max			
PCML	Trar	nsmitte	er, receiv transmi	ver, and itter, rec	input referer ceiver, and re	nce cloo eference	ck pins e clock	of the high-s I/O pin speci	peed tra fications	nsceiver , refer to	rs use o Table	the PC e 23 on	ML I/O s page 18	standard 3.	. For			
2.5 V	2 375 2	5 2 5	25	25	2.5	2 625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375
LVDS ⁽¹⁾	2.575	2.0	2.025	100	1.25 V	_	1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375			
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	—	_	—				
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4			
Mini- LVDS (HIO) ⁽³⁾	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4			
LVPECL (4	_	_	_	300	_		0.6	D _{MAX} ≤ 700 Mbps	1.8		_	_	_	_	_			
), (9)				300			1	D _{MAX} > 700 Mbps	1.6									

Notes to Table 22:

(1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

(2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

(3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 V.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Switching Characteristics

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

Table 23.	Transceiver 3	Specifications	for Stratix	V GX	and GS	Devices	(1)	(Part 1	nf 7	۱
Table 20.	TIANSUCIACI	opeonitionationa	IUI UIIAIIA	I UA	anu uu	DEVICES	• •	(1 61 6 1		

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reference Clock											
Supported I/O	Dedicated reference clock pin	1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL									
Standards	RX reference clock pin		1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS								
Input Reference Clock Frequency (CMU PLL) ⁽⁸⁾	_	40		710	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁸⁾		100		710	100		710	100		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁶⁾			400	_		400			400	ns
Fall time	Measure at ±60 mV of differential signal ⁽²⁶⁾		_	400	_		400			400	μs
Duty cycle		45		55	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express® (PCIe [®])	30		33	30		33	30	_	33	kHz

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Transceiver Speed Grade 2			Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting	_	85 ± 30%		_	85 ± 30%		—	85 ± 30%		Ω
Differential on-	100–Ω setting	_	100 ± 30%		_	100 ± 30%		_	100 ± 30%	_	Ω
chip termination resistors ⁽²¹⁾	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%		_	150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth	_	600	_	_	600	_		600	_	mV
	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth		600	_		600	_		600	_	mV
(oupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth		700	_	_	700	_	_	700	_	mV
	V _{CCR_GXB} = 1.0 V half bandwidth		750	_	_	750	_	_	750	_	mV
t _{LTR} ⁽¹¹⁾	—	_	_	10	_	—	10	_	—	10	μs
t _{LTD} ⁽¹²⁾	—	4	_		4	—		4	-	—	μs
t _{LTD_manual} ⁽¹³⁾	—	4			4	—		4	—	—	μs
t _{LTR_LTD_manual} ⁽¹⁴⁾	—	15	_		15	—		15	—	—	μs
Run Length		_		200	_	—	200	_	—	200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)		_	16	_	_	16	_		16	dB

 Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 4 of 7)

Symbol/	Conditions	S	Transceive peed Grade	2	S	Fransceive Deed Grade	r 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
	85- Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels ⁽¹⁹⁾	120-Ω setting	_	120 ± 30%	_	—	120 ± 30%	—	Ω
	150-Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels	_	650	_	—	650	—	mV
	VCCR_GXB = 0.85 V or 0.9 V	_	600	_	_	600	_	mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700		_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth	_	750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	—	_	—	10	—	—	10	μs
t _{LTD} ⁽¹⁰⁾		4			4	_	_	μs
t _{LTD_manual} ⁽¹¹⁾		4	_		4	_	_	μs
t _{LTR_LTD_manual} ⁽¹²⁾	—	15	—	_	15	—	—	μs
Run Lenath	GT channels		—	72	—	—	72	CID
	GX channels				(8)			
CDR PPM	GT channels	_	—	1000	—	—	1000	± PPM
	GX channels				(8)			
Programmable	GT channels	_		14		_	14	dB
(AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_		7.5	_	_	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels	_	100	—	_	100	_	Ω
Transmitter								
Supported I/O Standards	_			1.4-V	and 1.5-V P	CML		
Data rate (Standard PCS)	GX channels	600	_	8500	600		8500	Mbps
Data rate (10G PCS)	GX channels	600		12,500	600		12,500	Mbps

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5)⁽¹⁾

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance							
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit				
Global and Regional Clock	717	650	580	MHz				
Periphery Clock	550	500	500	MHz				

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 36 lists high-speed I/O timing for Stratix V devices.

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4)

Sumbol	Conditions	C1		C2, C2L, I2, I2L			C3, I3, I3L, I3YY			C4,14			11	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5	_	800	5		800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards ⁽³⁾	Clock boost factor W = 1 to 40 $^{(4)}$	5		800	5		800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5	_	520	5		520	5	_	420	5	_	420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	800	5	_	800	5	_	625 (5)	5	_	525 (5)	MHz

Speed Grade	Min	Max	Unit
C4,I4	8	16	ps

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 40:

(1) The typical value equals the average of the minimum and maximum values.

(2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices ⁽¹⁾

Number of DQS Delay Buffers	C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,14	Unit
1	28	28	30	32	ps
2	56	56	60	64	ps
3	84	84	90	96	ps
4	112	112	120	128	ps

Notes to Table 41:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a -2 speed grade is ± 78 ps or ± 39 ps.

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1	^{),} (Part 1 of 2) ^{(2), (3)}
---	---

Clock	Parameter	Symbol	C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14		Unit
NELWURK		-	Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-50	50	-50	50	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-100	100	-100	100	-110	110	-110	110	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-50	50	-50	50	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	$t_{JIT(per)}$	-75	75	-75	75	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-150	150	-150	150	-165	165	-165	165	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-75	75	-75	75	-90	90	-90	90	ps

Clock Network	Parameter	Symbol	C	C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14	
		-	Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	$t_{\rm JIT(cc)}$	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Notes to Table 42:

(1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

(2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	—	_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\rm R_S/R_T$ calibration		1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)		2.5		ns

Figure 10 shows the timing diagram for the oe and dyn_term_ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Duty Cycle Distortion (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins (1)

Symbol	C	1	C2, C2	C2, C2L, I2, I2L		C3, I3, I3L, I3YY		4,14	Unit
-	Min	Max	Min	Max	Min	Max	Min	Max	
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Note to Table 44:

(1) The DCD numbers do not cover the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification (1)

POR Delay	Minimum	Maximum
Fast	4 ms	12 ms
Standard	100 ms	300 ms

Note to Table 45:

(1) You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

JTAG Configuration Specifications

Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period ⁽²⁾	30		ns
t _{JCP}	TCK clock period ⁽²⁾	167	—	ns
t _{JCH}	TCK clock high time ⁽²⁾	14	—	ns
t _{JCL}	TCK clock low time ⁽²⁾	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns

FPP Configuration Timing when DCLK-to-DATA [] = 1

Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.

Notes to Figure 12:

- (1) Use this timing waveform when the DCLK-to-DATA [] ratio is 1.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nstatus low for the time of the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (8) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT DONE goes low.

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Fable 52.	DCLK Frequency	Specification in th	e AS Configuration	Scheme ^{(1),}	(2)
-----------	----------------	---------------------	--------------------	------------------------	-----

Minimum	Typical	Unit	
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 52:

(1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

(2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Notes to Figure 14:

- (1) If you are using AS $\times 4$ mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or CLKUSR pin.
- (3) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

Table JS. As fining falancees for as $\times 1$ and as $\times 4$ configurations in straits V devices $(2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	Table 53.	AS Timing	Parameters for AS	\times 1 and AS \times 4 Confi	gurations in Stratix V	/ Devices ^{(1), (2)}	(Part 1 of 2)
--	-----------	-----------	--------------------------	------------------------------------	------------------------	-------------------------------	---------------

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	—	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	_	ns

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specificatio

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	_	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available	Min	Fast	Model				Slow N	lodel			
(1)	Settings	0ffset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Paramotor	Availabla	Min	Fast		Slow Model							
(1)	Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns

Table 58.	IOE Pro	grammable De	lay for	Stratix V	V Devices	(Part 2 of 2)
-----------	---------	--------------	---------	-----------	-----------	--------------	---

Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Symbol	Parameter	Typical	Unit
		0 (default)	ps
Dauman	Rising and/or falling edge delay	25	ps
DOUTBUF		50	ps
		75	ps

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject	Definitions
Α		
В	—	—
С		
D	—	_
E	—	_
F	f _{HSCLK}	Left and right PLL input clock frequency.
	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
	f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes	
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure. 	
	3.8	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.	
		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. 	
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. 	
April 2017		 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table 	
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 	
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 	
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. 	
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table 	
		 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. 	
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.	
December 2015	3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	
December 2015		 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. 	
	3.4	• Changed the data rate specification for transceiver speed grade 3 in the following tables:	
		 "Transceiver Specifications for Stratix V GX and GS Devices" 	
		 "Stratix V Standard PCS Approximate Maximum Date Rate" 	
		 "Stratix V 10G PCS Approximate Maximum Data Rate" 	
July 2015		 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	
		 Changed the t_{c0} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. 	
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	