Intel - 5SGXMA7H2F35I3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	234720
Number of Logic Elements/Cells	622000
Total RAM Bits	51200000
Number of I/O	552
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxma7h2f35i3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Standard	V _{IL(DI}	_{c)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	l _{oi} (mA)	(mA)
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	$V_{REF} - 0.2$	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCI0}	0.75* V _{CCI0}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCI0}	16	-16
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCI0}	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{ccio} (V)		V _{SWIN}	_{G(DC)} (V)		V _{X(AC)} (V)		V _{swing(} ,	_{AC)} (V)
ijo Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCI0} + 0.6	V _{CCI0} /2- 0.2	_	V _{CCI0} /2 + 0.2	0.62	V _{CCI0} + 0.6
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCI0} + 0.6	V _{CCI0} /2- 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI0} + 0.6
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	V _{CCI0} /2- 0.15	_	V _{CCI0} /2 + 0.15	0.35	_
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	2(V _{IL(AC)} - V _{REF})
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCIO} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	_	V _{REF} -0.15	V _{CCI0} /2	V _{REF} + 0.15	-0.30	0.30

Note to Table 20:

(1) The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)} \text{ and } V_{IL(DC)})$.

I/O	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	_	0.9	0.68	_	0.9	0.4	_

I/O				V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{CM(DC)} (V	V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	—	0.5* V _{CCI0}	_	0.4* V _{CCI0}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCI0} - 0.12	0.5* V _{CCIO}	0.5*V _{CCI0} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{cio} (V)	(10)		V _{ID} (mV) ⁽⁸⁾			V _{ICM(DC)} (V)		Vo	_D (V) (5)	V _{осм} (V) <i>(6)</i>		
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Tran	ismitte					•	of the high-s I/O pin speci	•						For
2.5 V	2.375	2.5	2.625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375
LVDS ⁽¹⁾	2.375	2.0	2.025	100	1.25 V	_	1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375
BLVDS (5)	2.375	2.5	2.625	100	_	_		—	_	_	_		_		
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	—	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) ⁽³⁾	2.375	2.5	2.625	200		600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL (4			_	300		_	0.6	D _{MAX} ≤ 700 Mbps	1.8		_	_			
), (9)		_		300	_	_	1	D _{MAX} > 700 Mbps	1.6		_	_			—

Notes to Table 22:

(1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

(2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

(3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 V.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL ⁽²⁾)		fPLL	
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	—	6	12.5	_	6	3.125	_	3
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide		_	_
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
xN (PCIe) xN (Native PHY IP) –	8.0	8.0	Up to 13 channels above and below PLL	7.99	7.99	Up to 13 channels above	3.125	3.125	Up to 13 channels above
	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.55	7.55	and below PLL	3.120	0.120	and below PLL

Notes to Table 24:

(1) Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

(2) ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

(3) Channel span is within a transceiver bank.

(4) Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Table 26 shows the approximate maximum data rate using the 10G PCS.

Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1)

Mada (2)	Transceiver	PMA Width	64	40	40	40	32	32	
Mode ⁽²⁾	Speed Grade	PCS Width	64	66/67	50	40	64/66/67	32	
1	1	C1, C2, C2L, I2, I2L core speed grade	14.1	14.1	10.69	14.1	13.6	13.6	
	C1, C2, C2L, I2, I2L core speed grade	12.5	12.5	10.69	12.5	12.5	12.5		
	2	C3, I3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88	
FIFO or Register		C1, C2, C2L, I2, I2L core speed grade							
	2	C3, I3, I3L core speed grade	8.5 Gbps						
	3	C4, I4 core speed grade							
		I3YY core speed grade	10.3125 Gbps						

Notes to Table 26:

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Symbol/	Conditions	:	Transceive Speed Grade			Transceive peed Grade		Unit		
Description		Min	Тур	Max	Min	Тур	Max			
Reference Clock										
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	/IL, 1.4-V PC	ML, 1.5-V P	CML, 2.5-V and HCSL	PCML, Diffe	rential LVPE	ECL, LVDS		
	RX reference clock pin		1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LV							
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz		
Input Reference Clock Frequency (ATX PLL) ⁽⁶⁾	_	100	-	710	100	_	710	MHz		
Rise time	20% to 80%		_	400		—	400			
Fall time	80% to 20%			400	—		400	ps		
Duty cycle	—	45		55	45		55	%		
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz		
Spread-spectrum downspread	PCle	_	0 to -0.5		_	0 to -0.5	_	%		
On-chip termination resistors ⁽¹⁹⁾	_	_	100	_	_	100	_	Ω		
Absolute V _{MAX} ⁽³⁾	Dedicated reference clock pin		_	1.6	_	_	1.6	V		
	RX reference clock pin	_	_	1.2	_	_	1.2			
Absolute V _{MIN}	—	-0.4	—	—	-0.4	—	—	V		
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV		
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000 (2)		1050/1000 (2)	mV		
	RX reference clock pin	1	.0/0.9/0.85 (22)	1	.0/0.9/0.85 (22)	V		
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV		

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) ⁽¹⁾

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5)⁽¹⁾

Symbol/	Conditions		Transceive Speed Grade			Fransceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	Ī
	100 Hz			-70			-70	
Transmitter REFCLK	1 kHz		_	-90	_	_	-90	-
Phase Noise (622	10 kHz		_	-100	_	_	-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz		—	-110	_	—	-110	-
	\geq 1 MHz		—	-120	_	—	-120	-
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCIe)		_	3	_		3	ps (rms)
RREF ⁽¹⁷⁾	—		1800 ± 1%	_	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect		100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100	_	125	MHz
Receiver				•				
Supported I/O Standards	—	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS						
Data rate (Standard PCS) ⁽²¹⁾	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) ⁽²¹⁾	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	—	28,050	19,600	—	25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	_	-0.4		_	V
Maximum peak-to-peak	GT channels	_	—	1.6	—	—	1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration (¹⁶), (²⁰)	V _{CCR_GTB} = 1.05 V (V _{ICM} = 0.65 V)	—	-	2.2	_	_	2.2	V
oomguration (), ()	GX channels		•	•	(8)			
Minimum differential	GT channels	200	_		200			mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)			

Symbol/	Conditions	5	Transceiver Speed Grade			Transceiver Speed Grade 3		
Description		Min	Тур	Max	Min	Тур	Max	Unit
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
	85- Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination resistors	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels ⁽¹⁹⁾	120-Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels		650		—	650	—	mV
	VCCR_GXB = 0.85 V or 0.9 V		600	_	_	600		mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700	_	_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth		750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	—	—	—	10	—	—	10	μs
t _{LTD} ⁽¹⁰⁾		4			4			μs
t _{LTD_manual} ⁽¹¹⁾	—	4	—	—	4	—	_	μs
t _{LTR_LTD_manual} ⁽¹²⁾	_	15			15	—		μs
Run Length	GT channels	_	—	72	—	—	72	CID
nun Lengin	GX channels				(8)			
CDR PPM	GT channels			1000	_	—	1000	± PPM
	GX channels				(8)			
Programmable	GT channels	_	_	14	—	—	14	dB
equalization (AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_	—	7.5	—	—	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels	_	100	_	_	100	_	Ω
Transmitter	·1							
Supported I/O Standards	_			1.4-V	and 1.5-V F	PCML		
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS)	GX channels	600		12,500	600	_	12,500	Mbps

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5)⁽¹⁾

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (Fransceiver Specifications for Stratix V GT Devices (Part 5 of 5) ⁽¹⁾
---	--

Symbol/ Description	Conditions		Transceivei peed Grade			Fransceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} ⁽¹⁴⁾	—	—	_	10	—	—	10	μs

Notes to Table 28:

- (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Stratix V Device Overview.
- (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (6) Refer to Figure 6 for the GT channel DC gain curves.
- (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications.
- (9) t_{1 TR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (10) t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high.
- (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (13) tpll_powerdown is the PLL powerdown minimum pulse width.
- (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (17) For ES devices, RREF is 2000 $\Omega \pm 1\%$.
- (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (20) Refer to Figure 4.
- (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (22) This supply follows VCCR_GXB for both GX and GT channels.
- (23) When you use fPLL as a TXPLL of the transceiver.

Table 29 shows the V_{OD} settings for the GT channel.

Table 29.	Typical Von Setting	g for GT Channel, 1	EX Termination = 100 Ω
-----------	---------------------	---------------------	--------------------------------------

Symbol	V _{OD} Setting	V _{op} Value (mV)
	0	0
V_{0D} differential peak to peak typical ⁽¹⁾	1	200
	2	400
	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Table 33. Memory Block Performance Specifications for Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 33:

(1) To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50**% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

(2) When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

(3) The F_{MAX} specification is only achievable with Fitter options, MLAB Implementation In 16-Bit Deep Mode enabled.

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

	Table 35.	External	Temperature	Sensing Diode	e Specifications	for Stratix V Devices
--	-----------	----------	-------------	---------------	------------------	-----------------------

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μA
V _{bias,} voltage across diode	0.3	—	0.9	V
Series resistance	—	—	< 1	Ω
Diode ideality factor	1.006	1.008	1.010	—

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled

rx_reset	i		
rx_dpa_locked			

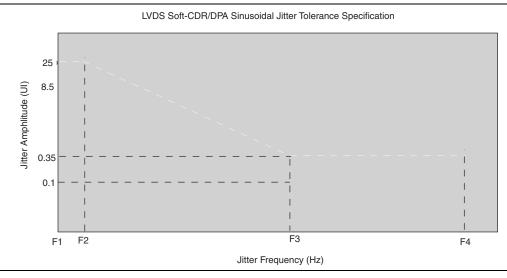
Table 37 lists the DPA lock time specifications for Stratix V devices.

Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3)

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
wiscenareous	01010101	8	32	640 data transitions

Notes to Table 37:

(1) The DPA lock time is for one channel.


(2) One data transition is defined as a 0-to-1 or 1-to-0 transition.

(3) The DPA lock time stated in this table applies to both commercial and industrial grade.

(4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps.

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}
Stratix V E ⁽¹⁾	5SEE9	—	342,742,976	700,888
	5SEEB	_	342,742,976	700,888

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Notes to Table 47:

(1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme.

(2) 36-transceiver devices.

(3) 24-transceiver devices.

(4) File size for the periphery image.

(5) The IOCSR .rbf size is specifically for the CvP feature.

Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design.

• For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help.*

Table 48 lists the minimum configuration time estimates for Stratix V devices.

Variant	Member		Active Serial ⁽¹⁾		Fast Passive Parallel ⁽²⁾			
	Member Code	Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	A3	4	100	0.534	32	100	0.067	
	AS	4	100	0.344	32	100	0.043	
	A4	4	100	0.534	32	100	0.067	
GX	A5	4	100	0.675	32	100	0.084	
	A7	4	100	0.675	32	100	0.084	
	A9	4	100	0.857	32	100	0.107	
	AB	4	100	0.857	32	100	0.107	
	B5	4	100	0.676	32	100	0.085	
	B6	4	100	0.676	32	100	0.085	
	B9	4	100	0.857	32	100	0.107	
	BB	4	100	0.857	32	100	0.107	
ст	C5	4	100	0.675	32	100	0.084	
GT	C7	4	100	0.675	32	100	0.084	

	Member	Active Serial ⁽¹⁾			Fast Passive Parallel ⁽²⁾		
Variant	Code	Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)
	D3	4	100	0.344	32	100	0.043
	D4	4	100	0.534	32	100	0.067
GS	D4	4	100	0.344	32	100	0.043
65	D5	4	100	0.534	32	100	0.067
	D6	4	100	0.741	32	100	0.093
	D8	4	100	0.741	32	100	0.093
Е	E9	4	100	0.857	32	100	0.107
	EB	4	100	0.857	32	100	0.107

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

Notes to Table 48:

(1) DCLK frequency of 100 MHz using external CLKUSR.

(2) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Fast Passive Parallel Configuration Timing

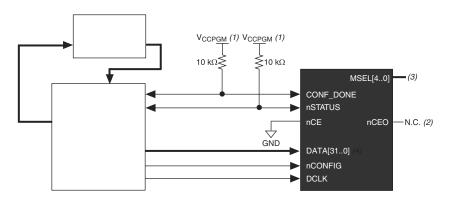
This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

DCLK-to-DATA[] Ratio for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[]ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[]ratio for each combination.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×8	Disabled	Enabled	1
FFF X0	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
	Enabled	Disabled	4
	Enabled	Enabled	4

 Table 49. DCLK-to-DATA[] Ratio ⁽¹⁾ (Part 1 of 2)


Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×32	Disabled	Enabled	4
FFF X02	Enabled	Disabled	8
	Enabled	Enabled	8

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽³⁾	μS
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} ⁽⁶⁾	nSTATUS high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45\times1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μS
+	CONTRACT high to an union analysis	4 × maximum		
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	DCLK period	—	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	$\begin{array}{c} t_{\text{CD2CU}} + \\ (8576 \times \text{CLKUSR} \\ \text{period}) \ ^{(5)} \end{array}$	_	_

Notes to Table 50:

(1) Use these timing parameters when the decompression and design security features are disabled.

(2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

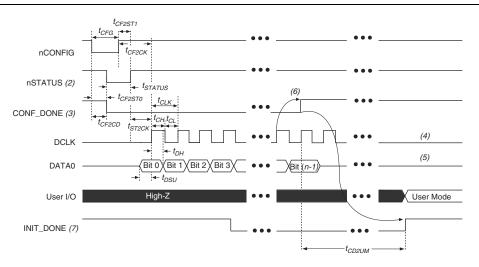
Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506	—	μS
t _{ST2CK} ⁽⁵⁾	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency	—	125	MHz
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 54:

(1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

(3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.

(5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55. Initialization Clock Source Option and the Maximu	m Frequency
---	-------------

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP ⁽²⁾	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

(1) The minimum number of clock cycles required for device initialization.

(2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications	Table 56.	Remote System	Upgrade Circuitry	y Timing S	Specifications
---	-----------	----------------------	-------------------	------------	-----------------------

Parameter	Minimum	Maximum	Unit	
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns	
t _{RU_nRSTIMER} ⁽²⁾	250	—	ns	

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum Typical		Maximum	Units	
5.3	7.9	12.5	MHz	

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available	Min	Fast	Model				Slow N	lodel			
Parameter (1)		Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes			
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure. 			
April 2017	3.8	 Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. 			
		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. 			
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. 			
		 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table 			
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 			
		Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.			
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. 			
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table 			
		 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. 			
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.			
December 2015	3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			
December 2015		 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. 			
		• Changed the data rate specification for transceiver speed grade 3 in the following tables:			
		 "Transceiver Specifications for Stratix V GX and GS Devices" 			
		 "Stratix V Standard PCS Approximate Maximum Date Rate" 			
		 "Stratix V 10G PCS Approximate Maximum Data Rate" 			
July 2015	3.4	 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			
		 Changed the t_{co} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. 			
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			

Table 61. Document Revision History (Part 2 of 3)

Date	Version	Changes			
		Added the I3YY speed grade and changed the data rates for the GX channel in Table 1.			
		 Added the I3YY speed grade to the V_{CC} description in Table 6. 			
		 Added the I3YY speed grade to V_{CCHIP_L}, V_{CCHIP_R}, V_{CCHSSI_L}, and V_{CCHSSI_R} descriptions in Table 7. 			
		■ Added 240-Ω to Table 11.			
		Changed CDR PPM tolerance in Table 23.			
		 Added additional max data rate for fPLL in Table 23. 			
		 Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. 			
		 Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. 			
		Changed CDR PPM tolerance in Table 28.			
		 Added additional max data rate for fPLL in Table 28. 			
		Changed the mode descriptions for MLAB and M20K in Table 33.			
		■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36.			
November 2014	3.3	 Changed the frequency ranges for C1 and C2 in Table 39. 			
		Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47.			
		 Added note about nSTATUS to Table 50, Table 51, Table 54. 			
		 Changed the available settings in Table 58. 			
		 Changed the note in "Periphery Performance". 			
		 Updated the "I/O Standard Specifications" section. 			
		 Updated the "Raw Binary File Size" section. 			
		 Updated the receiver voltage input range in Table 22. 			
		 Updated the max frequency for the LVDS clock network in Table 36. 			
		■ Updated the DCLK note to Figure 11.			
		 Updated Table 23 VO_{CM} (DC Coupled) condition. 			
		 Updated Table 6 and Table 7. 			
		■ Added the DCLK specification to Table 55.			
		 Updated the notes for Table 47. 			
		 Updated the list of parameters for Table 56. 			
November 2013	3.2	Updated Table 28			
November 2013	3.1	Updated Table 33			
November 2013	3.0	Updated Table 23 and Table 28			
October 2013	2.9	 Updated the "Transceiver Characterization" section 			
		 Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 			
October 2013	2.8	 Added Figure 1 and Figure 3 			
		 Added the "Transceiver Characterization" section 			
		 Removed all "Preliminary" designations. 			