E·XFL

Intel - 5SGXMA7K2F35I2N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	234720
Number of Logic Elements/Cells	622000
Total RAM Bits	51200000
Number of I/O	432
Number of Gates	- ·
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxma7k2f35i2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4

I/O Standar	V _{IL(D}	_{C)} (V)	V _{H(D}	_{0C} (V)	V _{L(AC)} (V)	V _{H(AC)} (V)	$V_{0L}(V)$	<i>К</i> _Н (V)	· I _{ol} (mA)	I _{oh}
1/O Stanual	Min	Max	Min	Max	Max	Min	Ma	ix N	lin	(mA)
HSTL-18 Class I	—	V _{REF} 0.1	V _{REF} + 0.1	—	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I	_	V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II	_	V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF}	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF}	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	16	-16
HSUL-12		V _{REF} - 0.13	V _{REF} + 0.13		V _{REF} 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCIO}		

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard	V _{CCIO} (V)		V _{SWING(DC} (V)		¥ _(AC) (V)			Vswing(ad)V)		
1/O Stanuar	Min	Тур	Max	Min	Max	Min	Тур	o Ma	x M	in Ma
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCI} 62- 0.2	—	V _{CCIØ} 2 + 0.2	0.62	V _{CCIO} + 0.6
SSTL-18 Class I, II	^S 1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCI} 62- 0.175	—	V _{CCIØ} 2 + 0.175	0.5	V _{CCIO} + 0.6
SSTL-15 Class I, II	³ 1.425	1.5	1.575	0.2	(1)	V _{CCI} 62- 0.15	—	V _{CCIØ} 2 + 0.15	0.35	—
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCI} 62- 0.15	V _{CCI} 62	V _{CCIØ} 2 + 0.15	2(V _{IH(AC)} - V _{RE})	2(V _{IL(AC)} - V _{REF})
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCI} 62- 0.15	V _{CCI} 62	V _{CCIØ} 2 + 0.15	2(V _{IH(AC)} - V _{RE} ₽	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18		V _{REF} 0.15	V _{CCI} 62	V _{REF} + 0.15	-0.30	0.30

Note toTable 20

The maximum value for
 ^V_{WING(DC} is not defined. However, each singheled signal needs the within the respecte single-ended limits (V_{IH(DC}) and V_{L(DC}).

									•		<i>,</i>			
1/0		V _{CCIO} (V))	VOIF (_{[DC} (V)		V _{X(AC)} (V))		K ^{M(DC})	/)	YOIF((V)	
Standard	Min	Тур	Max	Mir	n Ma	x Min	Ту	ip Ma	x N	۰ ۱in	Гур	Мах	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	8 —	1.1	20.	.4 –	+
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68		0.9	0.6	8 —	0.9	0.	.4 –	+

- 1 You typically use the interactive Excel-bats farly Power Estimator before designing the FPGA to get a magnitude estimate herefore device power. The Quartus II PowerPlay Power Analyzer provides better quality estimes based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-deed and estimated signal activities that, when combined with detailed circuit mode yields very accurate power estimates.
- f For more information about power estimation tools, refer **Rowthe** *Bay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5)⁽¹⁾

Symbol/	Conditions		Transceive Speed Grade		SI	Unit		
Description		Min	Тур	Max	Min	Тур	Max	
	100 Hz			-70			-70	
Transmitter REFCLK	1 kHz		_	-90	_	_	-90	-
Phase Noise (622	10 kHz		_	-100	_	_	-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz		—	-110	_	—	-110	-
	\geq 1 MHz		—	-120	_	—	-120	-
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCIe)		_	3	_		3	ps (rms)
RREF ⁽¹⁷⁾	—		1800 ± 1%	_	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect		100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100	_	125	MHz
Receiver				•				
Supported I/O Standards	—		1.4-V PCMI	_, 1.5-V PCM	L, 2.5-V PCI	ML, LVPEC	L, and LVDS	3
Data rate (Standard PCS) ⁽²¹⁾	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) ⁽²¹⁾	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	—	28,050	19,600	—	25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	_	-0.4		_	V
Maximum peak-to-peak	GT channels	_	—	1.6	—	—	1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device	V _{CCR_GTB} = 1.05 V (V _{ICM} = 0.65 V)	—	-	2.2	_	_	2.2	V
configuration ⁽¹⁶⁾ , ⁽²⁰⁾	GX channels		•	•	(8)			
Minimum differential	GT channels	200	_		200			mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)			

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance					
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit		
Global and Regional Clock	717	650	580	MHz		
Periphery Clock	550	500	500	MHz		

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPCO}	JTAG port clock to output	—	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	1 4 ⁽¹⁾	ns

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Notes to Table 46:

(1) A 1 ns adder is required for each V_{CCI0} voltage step down from 3.0 V. For example, $t_{JPC0} = 12$ ns if V_{CCI0} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}	
	FCOVAD	H35, F40, F35 ⁽²⁾	213,798,880	562,392	
	5SGXA3	H29, F35 ⁽³⁾	137,598,880	564,504	
	5SGXA4	_	213,798,880	563,672	
	5SGXA5	_	269,979,008	562,392	
	5SGXA7	_	269,979,008	562,392	
Stratix V GX	5SGXA9	—	342,742,976	700,888	
	5SGXAB	—	342,742,976	700,888	
	5SGXB5	_	270,528,640	584,344	
	5SGXB6	—	270,528,640	584,344	
	5SGXB9	—	342,742,976	700,888	
	5SGXBB	_	342,742,976	700,888	
Stratix V GT	5SGTC5	—	269,979,008	562,392	
	5SGTC7	—	269,979,008	562,392	
	5SGSD3	—	137,598,880	564,504	
	5SGSD4	F1517	213,798,880	563,672	
Stratix V GS	<u>5565D4</u>	—	137,598,880	564,504	
	5SGSD5	_	213,798,880	563,672	
	5SGSD6	_	293,441,888	565,528	
	5SGSD8	_	293,441,888	565,528	

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

⁽²⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Page 60

Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is more than 1.

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μS
t _{STATUS}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} ⁽⁵⁾	nCONFIG high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} ⁽⁵⁾	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA [] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽⁵⁾		S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45\times1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 51:

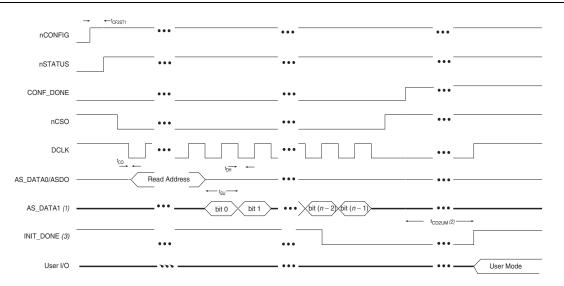
- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (5) N is the ${\tt DCLK}\mbox{-to-DATA}$ ratio and $f_{{\tt DCLK}}$ is the ${\tt DCLK}$ frequency the system is operating.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Table 52.	DCLK Frequency	Specification in the <i>l</i>	AS Configuration Scheme	(1), (2)
-----------	----------------	-------------------------------	-------------------------	----------

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz


Notes to Table 52:

(1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

(2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Notes to Figure 14:

- (1) If you are using AS $\times 4$ mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or CLKUSR pin.
- (3) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

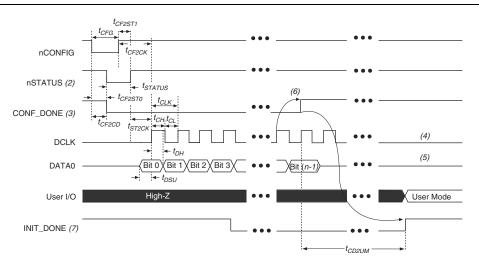
Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	—	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	—	ns

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.