Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 234720 | | Number of Logic Elements/Cells | 622000 | | Total RAM Bits | 51200000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma7n2f40c3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 3 Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2) | Symbol | Description | Minimum | Maximum | Unit | |-----------------------|--------------------------------|---------|---------|------| | V _{CCD_FPLL} | PLL digital power supply | -0.5 | 1.8 | V | | V _{CCA_FPLL} | PLL analog power supply | -0.5 | 3.4 | V | | V _I | DC input voltage | -0.5 | 3.8 | V | | T _J | Operating junction temperature | -55 | 125 | °C | | T _{STG} | Storage temperature (No bias) | -65 | 150 | °C | | I _{OUT} | DC output current per pin | -25 | 40 | mA | Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices. Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices | Symbol | Description | Devices | Minimum | Maximum | Unit | |-----------------------|--|------------|---------|---------|------| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left side) | GX, GS, GT | -0.5 | 3.75 | V | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right side) | GX, GS | -0.5 | 3.75 | V | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | -0.5 | 3.75 | V | | V _{CCHIP_L} | Transceiver hard IP power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHIP_R} | Transceiver hard IP power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_L} | Transceiver PCS power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_R} | Transceiver PCS power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCT_GXBL} | Transmitter analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCL_GTBR} | Transmitter clock network power supply (right side) | GT | -0.5 | 1.35 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | -0.5 | 1.8 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | -0.5 | 1.8 | V | ### **Maximum Allowed Overshoot and Undershoot Voltage** During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. Page 4 Electrical Characteristics Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years. **Table 5. Maximum Allowed Overshoot During Transitions** | Symbol | Description | Condition (V) | Overshoot Duration as %
@ T _J = 100°C | Unit | |---------|------------------|---------------|---|------| | | | 3.8 | 100 | % | | | AC input voltage | 3.85 | 64 | % | | | | 3.9 | 36 | % | | | | 3.95 | 21 | % | | Vi (AC) | | 4 | 12 | % | | | | 4.05 | 7 | % | | | | 4.1 | 4 | % | | | | 4.15 | 2 | % | | | | 4.2 | 1 | % | Figure 1. Stratix V Device Overshoot Duration Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Theorem analog power supply (right sluc) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog power supply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (left side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | | | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | V _{CCT_GXBR} | Tuesda sasista u anala a sasasua u assasis (sisabit ai da) | | 0.87 | 0.90 | 0.93 | | | (2) | Transmitter analog power supply (right side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | ### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Page 10 Electrical Characteristics Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2) | | | | | Calibration Accuracy | | | | | | |--|--|--|------------|----------------------|----------------|------------|------|--|--| | Symbol | Description | Conditions | C1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | | | 50-Ω R _S | Internal series termination with calibration (50- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | | $34\text{-}\Omega$ and $40\text{-}\Omega$ R_S | Internal series termination with calibration (34- Ω and 40- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | | 48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S | Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting) | V _{CCIO} = 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | | 50-Ω R _T | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 2.5, 1.8,
1.5, 1.2 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | | | $\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$ | Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | | | 60- Ω and 120- Ω R _T | Internal parallel termination with calibration (60- Ω and 120- Ω setting) | V _{CCIO} = 1.2 | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | | | $\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$ | Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | ### Note to Table 11: Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes. Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2) | | | | Resistance Tolerance | | | | | | |-----------------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------|--| | Symbol | Description | Conditions | C 1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | | 25-Ω R, 50-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 3.0 and 2.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | ⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only. Page 14 Electrical Characteristics Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices | I/O Standard | | V _{CCIO} (V) | | | V _{REF} (V) | | V _{TT} (V) | | | | |-------------------------|-------|-----------------------|-------|-----------------------------|-------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|--| | I/O Standard | Min | Тур | Max | Min | Тур | Max | Min | Тур | Мах | | | SSTL-2
Class I, II | 2.375 | 2.5 | 2.625 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | V _{REF} – 0.04 | V_{REF} | V _{REF} + 0.04 | | | SSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.833 | 0.9 | 0.969 | V _{REF} – 0.04 | V _{REF} | V _{REF} + 0.04 | | | SSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | | SSTL-135
Class I, II | 1.283 | 1.35 | 1.418 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
V _{CCIO} | 0.51 *
V _{CCIO} | | | SSTL-125
Class I, II | 1.19 | 1.25 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | | SSTL-12
Class I, II | 1.14 | 1.20 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | | HSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.85 | 0.9 | 0.95 | _ | V _{CCIO} /2 | _ | | | HSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.68 | 0.75 | 0.9 | _ | V _{CCIO} /2 | _ | | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.47 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.53 *
V _{CCIO} | _ | V _{CCIO} /2 | _ | | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | _ | _ | _ | | Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2) | I/O Standard | V _{IL(D(} | _{c)} (V) | V _{IH(D} | _{C)} (V) | V _{IL(AC)} (V) | V _{IH(AC)} (V) | V _{OL} (V) | V _{OH} (V) | I (mA) | I _{oh} | |-------------------------|--------------------|--------------------------|--------------------------|-------------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------|-----------------| | i/U Stanuaru | Min | Max | Min | Max | Max | Min | Max | Min | I _{ol} (mA) | (mA) | | SSTL-2
Class I | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} –
0.31 | V _{REF} + 0.31 | V _{TT} –
0.608 | V _{TT} + 0.608 | 8.1 | -8.1 | | SSTL-2
Class II | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} – 0.31 | V _{REF} + 0.31 | V _{TT} – 0.81 | V _{TT} + 0.81 | 16.2 | -16.2 | | SSTL-18
Class I | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} – 0.25 | V _{REF} + 0.25 | V _{TT} – 0.603 | V _{TT} + 0.603 | 6.7 | -6.7 | | SSTL-18
Class II | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} –
0.25 | V _{REF} + 0.25 | 0.28 | V _{CCIO} - 0.28 | 13.4 | -13.4 | | SSTL-15
Class I | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 8 | -8 | | SSTL-15
Class II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 16 | -16 | | SSTL-135
Class I, II | _ | V _{REF} – 0.09 | V _{REF} + 0.09 | _ | V _{REF} –
0.16 | V _{REF} + 0.16 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-125
Class I, II | _ | V _{REF} – 0.85 | V _{REF} + 0.85 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-12
Class I, II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | Page 20 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 3 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | sceive
Grade | r Speed
2 | Trar | sceive
Grade | er Speed
e 3 | Unit | |--|---|------|------------------|--------------|----------|-----------------|--------------|---------|-----------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reconfiguration
clock
(mgmt_clk_clk)
frequency | _ | 100 | _ | 125 | 100 | _ | 125 | 100 | _ | 125 | MHz | | Receiver | | | | | | | | | | | | | Supported I/O
Standards | _ | | | 1.4-V PCMI | _, 1.5-V | PCML, | 2.5-V PCM | L, LVPE | CL, and | d LVDS | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) (9), (23) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Absolute V _{MAX} for a receiver pin ⁽⁵⁾ | _ | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | _ | -0.4 | _ | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-
to-peak
differential input
voltage V _{ID} (diff p-
p) before device
configuration (22) | _ | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | Maximum peak-
to-peak | $V_{CCR_GXB} = 1.0 \text{ V}/1.05 \text{ V} $ $(V_{ICM} = 0.70 \text{ V})$ | _ | _ | 2.0 | _ | _ | 2.0 | _ | _ | 2.0 | V | | differential input voltage V _{ID} (diff p-p) after device configuration (18), | $V_{\text{CCR_GXB}} = 0.90 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | | | 2.4 | _ | | 2.4 | _ | _ | 2.4 | V | | configuration ⁽¹⁸⁾ , <i>(22)</i> | $V_{\text{CCR_GXB}} = 0.85 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | _ | _ | 2.4 | _ | _ | 2.4 | _ | _ | 2.4 | V | | Minimum differential eye opening at receiver serial input pins (6), (22), (27) | _ | 85 | _ | _ | 85 | _ | _ | 85 | _ | _ | mV | Switching Characteristics Page 27 Table 26 shows the approximate maximum data rate using the 10G PCS. Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1) | Mode ⁽²⁾ | Transceiver | PMA Width | 64 | 40 | 40 | 40 | 32 | 32 | | | |------------------------------------|-------------|--|----------|-------|-------|------|----------|-------|--|--| | Widue (2) | Speed Grade | PCS Width | 64 | 66/67 | 50 | 40 | 64/66/67 | 32 | | | | 1 | 1 | C1, C2, C2L, I2, I2L
core speed grade | 14.1 | 14.1 | 10.69 | 14.1 | 13.6 | 13.6 | | | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 12.5 | 12.5 | | | | | 2 | C3, I3, I3L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 10.88 | 10.88 | | | | FIFO or
Register | | C1, C2, C2L, I2, I2L
core speed grade | 8.5 Gbps | | | | | | | | | | 3 | C3, I3, I3L
core speed grade | | | | | | | | | | | 3 | C4, I4
core speed grade | | | | | | | | | | I3YY core speed grade 10.3125 Gbps | | | | | | | | | | | ### Notes to Table 26: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | ### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | Transceiver
Speed Grade 2 | | | s | Unit | | | | |---|-------------------------------------|------------------------------|---------------|---------------|------------------------|-------------|--------------|------------|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | Reference Clock | • | • | • | • | • | • | • | | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | | Otandards | RX reference clock pin | | 1.4-V PCML | ., 1.5-V PCN | IL, 2.5-V PC | ML, LVPEC | L, and LVDS | 3 | | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | | Fall time | 80% to 20% | _ | <u> </u> | 400 | _ | <u> </u> | 400 | ps | | | Duty cycle | _ | 45 | <u> </u> | 55 | 45 | _ | 55 | % | | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | | RX reference
clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | 1050/1000 ⁽²⁾ | | 1050/1000 (2) | | 2) | mV | | | | | RX reference
clock pin | 1 | .0/0.9/0.85 | (22) | 1.0/0.9/0.85 (22) | | | V | | | V _{ICM} (DC coupled) HCSL I/O standard for PCIe reference clock | | 250 | _ | 550 | 250 | _ | 550 | mV | | Switching Characteristics Page 31 Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$ | Symbol/ | Conditions | Transceiver
Speed Grade 2 | | | | Transceiver
Speed Grade 3 | | | | |--|---|------------------------------|---------------|--------------|--------------|------------------------------|-------------|----------|--| | Description | | Min | Тур | Max | Min | Тур | Max | Unit | | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | | | | Transmitter REFCLK | 1 kHz | _ | _ | -90 | | _ | -90 | | | | Phase Noise (622 | 10 kHz | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | | MHz) ⁽¹⁸⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | | | | | ≥1 MHz | | _ | -120 | _ | | -120 | 1 | | | Transmitter REFCLK
Phase Jitter (100
MHz) ⁽¹⁵⁾ | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | ps (rms) | | | RREF (17) | _ | _ | 1800
± 1% | _ | _ | 1800
± 1% | _ | Ω | | | Transceiver Clocks | | | | | | | | | | | fixedclk clock
frequency | PCIe
Receiver
Detect | _ | 100 or
125 | _ | _ | 100 or
125 | _ | MHz | | | Reconfiguration clock
(mgmt_clk_clk)
frequency | | 100 | _ | 125 | 100 | | 125 | MHz | | | Receiver | | | | | | | • | • | | | Supported I/O
Standards | _ | | 1.4-V PCML | , 1.5-V PCML | _, 2.5-V PCI | ML, LVPEC | L, and LVDS | 6 | | | Data rate
(Standard PCS) (21) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | | Data rate
(10G PCS) (21) | GX channels | 600 | _ | 12,500 | 600 | _ | 12,500 | Mbps | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | | Absolute V _{MAX} for a receiver pin ⁽³⁾ | GT channels | _ | _ | 1.2 | _ | | 1.2 | V | | | Absolute V _{MIN} for a receiver pin | GT channels | -0.4 | _ | _ | -0.4 | _ | _ | V | | | Maximum peak-to-peak | GT channels | | _ | 1.6 | _ | | 1.6 | V | | | differential input
voltage V _{ID} (diff p-p)
before device
configuration ⁽²⁰⁾ | GX channels | | | | (8) | | | | | | NA-dayana III | GT channels | | | | | | | | | | Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20) | $V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$ | _ | _ | 2.2 | _ | _ | 2.2 | V | | | oomiguration ', ' / | GX channels | | | | (8) | | • | • | | | Minimum differential | GT channels | 200 | _ | _ | 200 | _ | _ | mV | | | eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾ | GX channels | | | | (8) | | | | | Page 38 Switching Characteristics - XFI - ASI - HiGig/HiGig+ - HiGig2/HiGig2+ - Serial Data Converter (SDC) - GPON - SDI - SONET - Fibre Channel (FC) - PCIe - QPI - SFF-8431 Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols. # **Core Performance Specifications** This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications. ## **Clock Tree Specifications** Table 30 lists the clock tree specifications for Stratix V devices. Table 30. Clock Tree Performance for Stratix V Devices (1) | | Performance | | | | | | |------------------------------|--------------------------|--------------------------|--------|------|--|--| | Symbol | C1, C2, C2L, I2, and I2L | C3, I3, I3L, and
I3YY | C4, I4 | Unit | | | | Global and
Regional Clock | 717 | 650 | 580 | MHz | | | | Periphery Clock | 550 | 500 | 500 | MHz | | | ### Note to Table 30: (1) The Stratix V ES devices are limited to 600 MHz core clock tree performance. Switching Characteristics Page 47 Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4) | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I | 4 | Unit | |-------------------------------|--|-----|-----|-----------|-----|--------|-----------|-----|---------|-----------|-----|------|-----------|----------| | Symbol | Conuntions | Min | Тур | Max | Ullit | | | SERDES factor J
= 3 to 10 | (6) | _ | (8) | (6) | | (8) | (6) | | (8) | (6) | _ | (8) | Mbps | | f _{HSDR} (data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | | (7) | (6) | | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | DPA Mode | | | | | | | | | | | | | | | | DPA run
length | _ | _ | _ | 1000
0 | UI | | Soft CDR mode | • | | | | | | | | | | | | | | | Soft-CDR
PPM
tolerance | _ | | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | ±
PPM | | Non DPA Mode | Non DPA Mode | | | | | | | | | | | | | | | Sampling
Window | _ | _ | _ | 300 | _ | | 300 | _ | | 300 | _ | _ | 300 | ps | ### Notes to Table 36: - (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block. - (2) When J = 1 or 2, bypass the SERDES block. - (3) This only applies to DPA and soft-CDR modes. - (4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate. - (5) This is achieved by using the **LVDS** clock network. - (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate. - (7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean. - (8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported. - (9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps. - (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin. - (11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis. - (12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA. - (13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above. - (14) Requires package skew compensation with PCB trace length. - (15) Do not mix single-ended I/O buffer within LVDS I/O bank. - (16) Chip-to-chip communication only with a maximum load of 5 pF. - (17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported. Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×32 | Disabled | Enabled | 4 | | FPF ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host ### Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Configuration Specification Page 57 ### FPP Configuration Timing when DCLK-to-DATA [] = 1 Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1. Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2) ### Notes to Figure 12: - (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1. - (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. - (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings. - (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (8) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low. Page 58 Configuration Specification Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1. Table 50. FPP Timing Parameters for Stratix V Devices (1) | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μS | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽³⁾ | μS | | t _{CF2CK} (6) | nCONFIG high to first rising edge on DCLK | 1,506 | _ | μS | | t _{ST2CK} (6) | nSTATUS high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (4) | 175 | 437 | μS | | + | GOVER DOVER high to GUVERN anabled | 4 × maximum | | | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | DCLK period | _ | | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾ | _ | _ | ### Notes to Table 50: - (1) Use these timing parameters when the decompression and design security features are disabled. - (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (3) This value is applicable if you do not delay configuration by externally holding the nstatus low. - (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device. - (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. # FPP Configuration Timing when DCLK-to-DATA [] > 1 Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1. Configuration Specification Page 61 # **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing ### Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. # **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 68 Glossary # Table 60. Glossary (Part 4 of 4) | Letter | Subject | Definitions | |--------|------------------------|--| | | V _{CM(DC)} | DC common mode input voltage. | | | V _{ICM} | Input common mode voltage—The common mode of the differential signal at the receiver. | | | V _{ID} | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver. | | | V _{DIF(AC)} | AC differential input voltage—Minimum AC input differential voltage required for switching. | | | V _{DIF(DC)} | DC differential input voltage— Minimum DC input differential voltage required for switching. | | | V _{IH} | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high. | | | V _{IH(AC)} | High-level AC input voltage | | | V _{IH(DC)} | High-level DC input voltage | | V | V _{IL} | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low. | | | V _{IL(AC)} | Low-level AC input voltage | | | V _{IL(DC)} | Low-level DC input voltage | | | V _{OCM} | Output common mode voltage—The common mode of the differential signal at the transmitter. | | | V _{OD} | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. | | | V _{SWING} | Differential input voltage | | | V _X | Input differential cross point voltage | | | V _{OX} | Output differential cross point voltage | | W | W | High-speed I/O block—clock boost factor | | Χ | | | | Υ | | _ | | Z | | | Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | Date | Version | Changes | |----------------|---------|---| | | | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60 | | May 2013 | 2.7 | ■ Added Table 24, Table 48 | | | | ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 | | February 2013 | 2.6 | ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46 | | , | | ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" | | | | ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35 | | | | ■ Added Table 33 | | | | ■ Added "Fast Passive Parallel Configuration Timing" | | D | 0.5 | ■ Added "Active Serial Configuration Timing" | | December 2012 | 2.5 | ■ Added "Passive Serial Configuration Timing" | | | | ■ Added "Remote System Upgrades" | | | | ■ Added "User Watchdog Internal Circuitry Timing Specification" | | | | ■ Added "Initialization" | | | | ■ Added "Raw Binary File Size" | | | 2.4 | ■ Added Figure 1, Figure 2, and Figure 3. | | June 2012 | | ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59. | | | | Various edits throughout to fix bugs. | | | | ■ Changed title of document to Stratix V Device Datasheet. | | | | ■ Removed document from the Stratix V handbook and made it a separate document. | | February 2012 | 2.3 | ■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | December 2011 | 2.2 | ■ Added Table 2–31. | | December 2011 | 2.2 | ■ Updated Table 2–28 and Table 2–34. | | Navarahar 0044 | 0.1 | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices. | | November 2011 | 2.1 | ■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | | ■ Various edits throughout to fix SPRs. | | | | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24. | | May 2011 | 2.0 | ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title. | | | | ■ Chapter moved to Volume 1. | | | | ■ Minor text edits. | | | | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | December 2010 | 1.1 | Converted chapter to the new template. | | | | ■ Minor text edits. | | July 2010 | 1.0 | Initial release. | Page 72 Document Revision History