Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 234720 | | Number of Logic Elements/Cells | 622000 | | Total RAM Bits | 51200000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma7n2f40i2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 5 # **Recommended Operating Conditions** This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus. Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |----------------------------------|--|------------|--------------------|------|--------------------|------| | | Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades) | _ | 0.87 | 0.9 | 0.93 | V | | V _{CC} | Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3) | _ | 0.82 | 0.85 | 0.88 | V | | V _{CCPT} | Power supply for programmable power technology | _ | 1.45 | 1.50 | 1.55 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | _ | 2.375 | 2.5 | 2.625 | V | | V (1) | I/O pre-driver (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V _{CCPD} ⁽¹⁾ | I/O pre-driver (2.5 V) power supply | | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | ٧ | | | I/O buffers (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | ٧ | | V_{CCIO} | I/O buffers (1.5 V) power supply | _ | 1.425 | 1.5 | 1.575 | V | | | I/O buffers (1.35 V) power supply | | 1.283 | 1.35 | 1.45 | V | | | I/O buffers (1.25 V) power supply | | 1.19 | 1.25 | 1.31 | V | | | I/O buffers (1.2 V) power supply | _ | 1.14 | 1.2 | 1.26 | V | | | Configuration pins (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V_{CCPGM} | Configuration pins (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | Configuration pins (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | V | | V _{CCA_FPLL} | PLL analog voltage regulator power supply | | 2.375 | 2.5 | 2.625 | V | | V _{CCD_FPLL} | PLL digital voltage regulator power supply | | 1.45 | 1.5 | 1.55 | V | | V _{CCBAT} (2) | Battery back-up power supply (For design security volatile key register) | _ | 1.2 | _ | 3.0 | V | | V _I | DC input voltage | _ | -0.5 | _ | 3.6 | V | | V ₀ | Output voltage | _ | 0 | _ | V _{CCIO} | V | | т. | Operating junction temperature | Commercial | 0 | _ | 85 | °C | | T _J | Operating junction temperature | Industrial | -40 | _ | 100 | °C | Page 6 Electrical Characteristics Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |----------------|-------------------------|--------------|--------------------|-----|--------------------|------| | t Dower cumply | Power supply ramp time | Standard POR | 200 μs | _ | 100 ms | _ | | LRAMP | Fower Supply rainp line | Fast POR | 200 μs | _ | 4 ms | _ | #### Notes to Table 6: - (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. - (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low. - (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades. - (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices. Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | | |-----------------------|---|------------|------------------------|---------|------------------------|------|--| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left | GX, GS, GT | 2.85 | 3.0 | 3.15 | V | | | (1), (3) | side) | ७४, ७७, ७१ | 2.375 | 2.5 | 2.625 | V | | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right | GX, GS | 2.85 | 3.0 | 3.15 | V | | | $(1), (\overline{3})$ | side) | রম, রহ | 2.375 | 2.5 | 2.625 | V | | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | 2.85 | 3.0 | 3.15 | V | | | | Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHIP_L} | Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V_{CCHIP_R} | Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHSSI_L} | Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHSSI_R} | Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | | | 0.82 | 0.85 | 0.88 | | | | V _{CCR_GXBL} | Receiver analog power supply (left side) | CV CC CT | 0.87 | 0.90 | 0.93 | V | | | (2) | Treceiver arialog power supply (left side) | GX, GS, GT | 0.97 | 1.0 | 1.03 | v | | | | | | 1.03 | 1.05 | 1.07 | 1 | | Electrical Characteristics Page 17 You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Switching Characteristics Page 19 Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|--|-------|------------------|-----------------------|-------|------------------|-----------------------|--------------------------|------------------|--------------------|-------------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Spread-spectrum
downspread | PCle | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | % | | On-chip
termination
resistors (21) | _ | _ | 100 | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} ⁽⁵⁾ | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | | _ | -0.4 | _ | | -0.4 | _ | 1 | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) (3) | Dedicated
reference
clock pin | 1050/ | 1000/90 | 00/850 ⁽²⁾ | 1050/ | 1000/90 | 00/850 ⁽²⁾ | 2) 1050/1000/900/850 (2) | | | mV | | coupled) (9 | RX reference clock pin | 1. | .0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | 250 | _ | 550 | mV | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | _ | _ | -70 | dBc/Hz | | Transmitter | 1 kHz
 _ | _ | -90 | _ | _ | -90 | _ | _ | -90 | dBc/Hz | | REFCLK Phase
Noise | 10 kHz | | _ | -100 | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | (622 MHz) ⁽²⁰⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | _ | _ | -110 | dBc/Hz | | | ≥1 MHz | _ | _ | -120 | _ | _ | -120 | _ | _ | -120 | dBc/Hz | | Transmitter
REFCLK Phase
Jitter
(100 MHz) (17) | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | _ | _ | 3 | ps
(rms) | | R _{REF} (19) | _ | _ | 1800
±1% | _ | _ | 1800
±1% | _ | _ | 180
0
±1% | _ | Ω | | Transceiver Clock | <u> </u> | | | _ | | | _ | | | _ | | | fixedclk clock frequency | PCIe
Receiver
Detect | _ | 100
or
125 | _ | _ | 100
or
125 | _ | _ | 100
or
125 | _ | MHz | Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | | | | - | 1.4-V ar | nd 1.5-V PC | ML | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Switching Characteristics Page 23 Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
e 1 | Trar | sceive
Grade | r Speed
2 | Tran | sceive
Grade | er Speed
e 3 | Unit | |---|--|------|------------------|-------------------------------|------|-----------------|-------------------------------|------|-----------------|-------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Inter-transceiver
block transmitter
channel-to-
channel skew | xN PMA
bonded mode | ı | ı | 500 | _ | ı | 500 | _ | _ | 500 | ps | | CMU PLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 12500 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | | | | VCO
post-divider
L=2 | 8000 | | 14100 | 8000 | | 12500 | 8000 | _ | 8500/
10312.5
(24) | Mbps | | Currented Date | L=4 | 4000 | _ | 7050 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data
Rate Range | L=8 | 2000 | _ | 3525 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | S | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | | 1 | _ | | 1 | | | μs | Page 24 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7) | Symbol/
Description | Conditions | Transceiver Spee
Grade 1 | | | Transceiver Speed
Grade 2 | | | Transceiver Speed
Grade 3 | | | Unit | |----------------------------|------------|-----------------------------|-----|-----|------------------------------|-----|-----|------------------------------|-----|-----|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 23: - (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level. - (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V. - (4) This supply follows VCCR_GXB. - (5) The device cannot tolerate prolonged operation at this absolute maximum. - (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode. - (8) The input reference clock frequency options depend on the data rate and the device speed grade. - (9) The line data rate may be limited by PCS-FPGA interface speed grade. - (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high. - (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width. - (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (19) For ES devices, R_{REF} is 2000 Ω ±1%. - (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (22) Refer to Figure 2. - (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (24) I3YY devices can achieve data rates up to 10.3125 Gbps. - (25) When you use fPLL as a TXPLL of the transceiver. - (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification. - (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition. Page 26 Switching Characteristics Table 25 shows the approximate maximum data rate using the standard PCS. Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3) | Mada (2) | Transceiver | PMA Width | 20 | 20 | 16 | 16 | 10 | 10 | 8 | 8 | |---------------------|--------------------------|--|---------|---------|---------|---------|-----|-----|------|------| | Mode ⁽²⁾ | Speed Grade | PCS/Core Width | 40 | 20 | 32 | 16 | 20 | 10 | 16 | 8 | | | 1 | C1, C2, C2L, I2,
I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C1, C2, C2L, I2, I2L core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | FIFO | | C1, C2, C2L, I2, I2L core speed grade | 8.5 | 8.5 | 8.5 | 8.5 | 6.5 | 5.8 | 5.2 | 4.72 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.8 | 4.2 | 3.84 | 3.44 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | Register | | C1, C2, C2L, I2, I2L
core speed grade | 10.3125 | 10.3125 | 10.3125 | 10.3125 | 6.1 | 5.7 | 4.88 | 4.56 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | C4, I4
core speed gra | | 8.5 | 8.2 | 7.04 | 6.56 | 4.4 | 4.1 | 3.52 | 3.28 | ### Notes to Table 25: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. ⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade. Page 40 Switching Characteristics Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |--|---|------|---------|--|-----------| | → (3) (4) | Input clock cycle-to-cycle jitter (f _{REF} ≥ 100 MHz) | _ | _ | 0.15 | UI (p-p) | | t _{INCCJ} (3), (4) | Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz) | -750 | | +750 | ps (p-p) | | + (5) | Period Jitter for dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 ⁽¹⁾ | ps (p-p) | | t _{OUTPJ_DC} (5) | Period Jitter for dedicated clock output (f _{OUT} < 100 MHz) | _ | _ | 17.5 ⁽¹⁾ | mUI (p-p) | | + (5) | Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 250 ⁽¹¹⁾ ,
175 ⁽¹²⁾ | ps (p-p) | | t _{FOUTPJ_DC} (5) | Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz) | _ | _ | 25 ⁽¹¹⁾ ,
17.5 ⁽¹²⁾ | mUI (p-p) | | + (5) | Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} \ge 100 \text{ MHz})$ | _ | _ | 175 | ps (p-p) | | t _{outccj_dc} (5) | Cycle-to-Cycle Jitter for a dedicated clock output (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | + (5) | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 250 ⁽¹¹⁾ ,
175 ⁽¹²⁾ | ps (p-p) | | t _{FOUTCCJ_DC} ⁽⁵⁾ | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)+ | _ | _ | 25 ⁽¹¹⁾ ,
17.5 ⁽¹²⁾ | mUI (p-p) | | t _{OUTPJ_IO} (5), | Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 | ps (p-p) | | (8) | Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{FOUTPJ 10} (5), | Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 (10) | ps (p-p) | | (8), (11) | Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 (10) | mUI (p-p) | | t _{outccj_10} (5), | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 | ps (p-p) | | (8) | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz) | _ | _ | 60 (10) | mUI (p-p) | | t _{ғоитссу_10} | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 (10) | ps (p-p) | | (8), (11) | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{CASC_OUTPJ_DC} | Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 | ps (p-p) | | (5), (6) | Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | f _{DRIFT} | Frequency drift after PFDENA is disabled for a duration of 100 μs | _ | _ | ±10 | % | | dK _{BIT} | Bit number of Delta Sigma Modulator (DSM) | 8 | 24 | 32 | Bits | | k _{VALUE} | Numerator of Fraction | 128 | 8388608 | 2147483648 | _ | Switching Characteristics Page 41 Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3) | | Symbol | Parameter | Min | Тур | Max | Unit | |---|--------|--|--------|------|-------|------| | f | RES | Resolution of VCO frequency (f _{INPFD} = 100 MHz) | 390625 | 5.96 | 0.023 | Hz | #### Notes to Table 31: - (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard. - (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL. - (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps. - (4) f_{REF} is fIN/N when N = 1. - (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52. - (6) The cascaded PLL specification is only applicable with the following condition: - a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz - b. Downstream PLL: Downstream PLL BW > 2 MHz - (7) High bandwidth PLL settings are not supported in external feedback mode. - (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50. - (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification. - (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz. - (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz. - (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz. ### **DSP Block Specifications** Table 32 lists the Stratix V DSP block performance specifications. Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2) | | | | F | Peformano | e | | | | |--|-----|---------|------------|-----------|------------------|-----|-----|------| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | Modes ı | ısing one | DSP | | | | | | Three 9 x 9 | 600 | 600 | 600 | 480 | 480 | 420 | 420 | MHz | | One 18 x 18 | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | Two partial 18 x 18 (or 16 x 16) | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | One 27 x 27 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 36 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of two 18 x 18(One sum of 2 16 x 16) | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of square | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 18 x 18 plus 36 (a x b) + c | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | Modes u | sing two I |)SPs | | | | • | | Three 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of four 18 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | One sum of two 27 x 27 | 465 | 465 | 450 | 380 | 380 | 300 | 290 | MHz | | One sum of two 36 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | One complex 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 36 x 36 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | Page 42 Switching Characteristics Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2) | | | Peformance | | | | | | | | | |-----------------------|-----|------------|-----------|------|------------------|-----|-----|------|--|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | | Modes us | ing Three | DSPs | • | | | | | | | One complex 18 x 25 | 425 | 425 | 415 | 340 | 340 | 275 | 265 | MHz | | | | Modes using Four DSPs | | | | | | | | | | | | One complex 27 x 27 | 465 | 465 | 465 | 380 | 380 | 300 | 290 | MHz | | | # **Memory Block Specifications** Table 33 lists the Stratix V memory block specifications. Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2) | | | Resour | ces Used | Performance | | | | | | | | |--------|------------------------------------|--------|----------|-------------|------------|-----|-----|---------|---------------------|-----|------
 | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, I2L | 13,
13L,
13YY | 14 | Unit | | | Single port, all supported widths | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | MLAB | Simple dual-port,
x32/x64 depth | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | IVILAD | Simple dual-port, x16 depth (3) | 0 | 1 | 675 | 675 | 533 | 400 | 675 | 533 | 400 | MHz | | | ROM, all supported widths | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | Page 44 Switching Characteristics # **Periphery Performance** This section describes periphery performance, including high-speed I/O and external memory interface. I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load. The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system. ### **High-Speed I/O Specification** Table 36 lists high-speed I/O timing for Stratix V devices. Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4) | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | | C4,I | 4 | Unit | |--|---------------------------------------|-----|-----|-----|-----|--------|--------|-----|---------|------------|-----|------|------------|-------| | Symbol | Conuntions | Min | Тур | Max | UIIIL | | f _{HSCLK_in} (input
clock
frequency)
True
Differential
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O
Standards ⁽³⁾ | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 520 | 5 | _ | 520 | 5 | | 420 | 5 | | 420 | MHz | | f _{HSCLK_OUT}
(output clock
frequency) | _ | 5 | | 800 | 5 | _ | 800 | 5 | | 625
(5) | 5 | | 525
(5) | MHz | Switching Characteristics Page 45 Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4) | Combal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I4 | 4 | II.a.i.k | |---|--|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|----------| | Symbol | Conditions | Min | Тур | Max | Unit | | Transmitter | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (9), (11),
(12), (13), (14), (15),
(16) | (6) | _ | 1600 | (6) | _ | 1434 | (6) | _ | 1250 | (6) | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16) | (6) | _ | 1600 | (6) | _ | 1600 | (6) | _ | 1600 | (6) | | 1250 | Mbps | | - f _{HSDR} (data
rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10) | SERDES factor J
= 4 to 10 (17) | (6) | _ | 1100 | (6) | _ | 1100 | (6) | _ | 840 | (6) | | 840 | Mbps | | t _{x Jitter} - True
Differential | Total Jitter for
Data Rate
600 Mbps -
1.25 Gbps | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | ps | | I/O Standards | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | UI | | t _{x Jitter} -
Emulated
Differential
I/O Standards | Total Jitter for
Data Rate
600 Mbps - 1.25
Gbps | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 325 | ps | | with Three
External
Output
Resistor
Network | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.25 | UI | Page 46 Switching Characteristics Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4) | | | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | | C4,I4 | 4 | | |--|---|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|------| | Symbol | Conditions | Min | Тур | Max | Unit | | t _{DUTY} | Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | | True Differential
I/O Standards | _ | _ | 160 | _ | _ | 160 | _ | _ | 200 | _ | _ | 200 | ps | | t _{RISE} & t _{FALL} t _{RISE} & t _{FALL} Differential I/O | | _ | | 250 | _ | _ | 250 | _ | | 250 | _ | | 300 | ps | | | True Differential
I/O Standards | _ | _ | 150 | _ | | 150 | | _ | 150 | | _ | 150 | ps | | TCCS | Emulated
Differential I/O
Standards | _ | _ | 300 | _ | _ | 300 | _ | | 300 | _ | | 300 | ps | | Receiver | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (11), (12),
(13), (14), (15), (16) | 150 | _ | 1434 | 150 | _ | 1434 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16) | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1250 | Mbps | | - f _{HSDRDPA}
(data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | _ | (7) | Mbps | Page 48 Switching Characteristics Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled. Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled Table 37 lists the DPA lock time specifications for Stratix V devices. Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3) | Standard | Training Pattern | Number of Data
Transitions in One
Repetition of the
Training Pattern | Number of
Repetitions per 256
Data Transitions ⁽⁴⁾ | Maximum | |--------------------|----------------------|---|---|----------------------| | SPI-4 | 00000000001111111111 | 2 | 128 | 640 data transitions | | Parallel Rapid I/O | 00001111 | 2 | 128 | 640 data transitions | | Faranei napiu 1/0 | 10010000 | 4 | 64 | 640 data transitions | | Miscellaneous | 10101010 | 8 | 32 | 640 data transitions | | IVIISCEIIAITEOUS | 01010101 | 8 | 32 | 640 data transitions | #### Notes to Table 37: - (1) The DPA lock time is for one channel. - (2) One data transition is defined as a 0-to-1 or 1-to-0 transition. - (3) The DPA lock time stated in this table applies to both commercial and industrial grade. - (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions. Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification 25 8.5 0.35 0.1 F1 F2 F3 F4 Jitter Frequency (Hz) Configuration Specification Page 63 Table 54 lists the PS configuration timing parameters for Stratix V devices. Table 54. PS Timing Parameters for Stratix V Devices | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nCONFIG low to nSTATUS low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽¹⁾ | μS | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nCONFIG high to first rising edge on DCLK | 1,506 | | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f _{MAX} | DCLK frequency | _ | 125 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 × CLKUSR period) $^{(4)}$ | _ | _ | ### Notes to Table 54: - (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (2) This value is
applicable if you do not delay configuration by externally holding the nSTATUS low. - (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section. - (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. ### Initialization Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency. Table 55. Initialization Clock Source Option and the Maximum Frequency | Initialization Clock
Source | Configuration Schemes | Maximum
Frequency | Minimum Number of Clock
Cycles ⁽¹⁾ | |--------------------------------|-----------------------|----------------------|--| | Internal Oscillator | AS, PS, FPP | 12.5 MHz | | | CLKUSR | AS, PS, FPP (2) | 125 MHz | 8576 | | DCLK | PS, FPP | 125 MHz | | #### Notes to Table 55: - $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$ - (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box. Glossary Page 65 Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2) | Parameter | Available | Min | Fast | Model | | | | Slow M | lodel | | | | |-----------|-----------|------------|------------|------------|-------|-------|-------|--------|-------|-------------|-------|------| | (1) | Settings | Offset (2) | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D3 | 8 | 0 | 1.587 | 1.699 | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047 | 3.257 | ns | | D4 | 64 | 0 | 0.464 | 0.492 | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920 | 1.006 | ns | | D5 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D6 | 32 | 0 | 0.229 | 0.244 | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456 | 0.499 | ns | #### Notes to Table 58: - (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor. - (2) Minimum offset does not include the intrinsic delay. # **Programmable Output Buffer Delay** Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps. Table 59. Programmable Output Buffer Delay for Stratix V Devices (1) | Symbol | Parameter | Typical | Unit | |---------------------|----------------------------|-------------|------| | | | 0 (default) | ps | | D | Rising and/or falling edge | 25 | ps | | D _{OUTBUF} | delay | 50 | ps | | | | 75 | ps | ### Note to Table 59: # **Glossary** Table 60 lists the glossary for this chapter. Table 60. Glossary (Part 1 of 4) | Letter | Subject | Definitions | |----------------------|--------------------|---| | Α | | | | В | _ | _ | | С | | | | D | _ | _ | | E | _ | | | | f _{HSCLK} | Left and right PLL input clock frequency. | | F | f _{HSDR} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA. | | f _{HSDRDPA} | | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | ⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment. Page 68 Glossary ## Table 60. Glossary (Part 4 of 4) | Letter | Subject | Definitions | |--------|------------------------|--| | | V _{CM(DC)} | DC common mode input voltage. | | | V _{ICM} | Input common mode voltage—The common mode of the differential signal at the receiver. | | | V _{ID} | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver. | | | V _{DIF(AC)} | AC differential input voltage—Minimum AC input differential voltage required for switching. | | | V _{DIF(DC)} | DC differential input voltage— Minimum DC input differential voltage required for switching. | | | V _{IH} | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high. | | | V _{IH(AC)} | High-level AC input voltage | | | V _{IH(DC)} | High-level DC input voltage | | V | V _{IL} | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low. | | | V _{IL(AC)} | Low-level AC input voltage | | | V _{IL(DC)} | Low-level DC input voltage | | | V _{OCM} | Output common mode voltage—The common mode of the differential signal at the transmitter. | | | V _{OD} | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. | | | V _{SWING} | Differential input voltage | | | V _X | Input differential cross point voltage | | | V _{OX} | Output differential cross point voltage | | W | W | High-speed I/O block—clock boost factor | | Χ | | | | Υ | | _ | | Z | | | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date | Version | Changes | |---------------|---------|---| | November 2014 | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | ■ Added 240-Ω to Table 11. | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | ■ Added additional max data rate for fPLL in Table 23. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | 3.3 | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | ■ Changed the mode descriptions for MLAB and M20K in Table 33. | | | | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | | | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | ■ Added note about nSTATUS to Table 50, Table 51, Table 54. | | | | ■ Changed the available settings in Table 58. | | | | ■ Changed the note in "Periphery Performance". | | | | ■ Updated the "I/O Standard Specifications" section. | | | | ■ Updated the "Raw Binary File Size" section. | | | | ■ Updated the receiver voltage input range in Table 22. | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | ■ Updated the DCLK note to Figure 11. | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | ■ Updated Table 6 and Table 7. | | | | ■ Added the DCLK specification to Table 55. | | | | ■ Updated the notes for Table 47. | | | | ■ Updated the list of parameters for Table 56. | | November 2013 | 3.2 | ■ Updated Table 28 | | November 2013 | 3.1 | ■ Updated Table 33 | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | October 2013 | | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | | 2.8 | ■ Added Figure 1 and Figure 3 | | | | ■ Added the "Transceiver Characterization" section | | | | ■ Removed all "Preliminary" designations. | Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | Date | Version | Changes | |---------------|---------|---| | May 2013 | 2.7 | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60 | | | | ■ Added Table 24, Table 48 | | | | ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 | | February 2013 | 2.6 | ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46 | | | | ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" | | | 2.5 | ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35 | | | | ■ Added Table 33 | | | | ■ Added "Fast Passive Parallel Configuration Timing" | | D | | ■ Added "Active Serial Configuration Timing" | | December 2012 | | ■ Added "Passive Serial Configuration Timing" | | | | ■ Added "Remote System Upgrades" | | | | ■ Added "User Watchdog Internal Circuitry Timing Specification" | | | | ■ Added "Initialization" | | | | ■ Added "Raw Binary File Size" | | | 2.4 | ■ Added Figure 1, Figure 2, and Figure 3. | | June 2012 | | ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35,
Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59. | | | | Various edits throughout to fix bugs. | | | | ■ Changed title of document to Stratix V Device Datasheet. | | | | ■ Removed document from the Stratix V handbook and made it a separate document. | | February 2012 | 2.3 | ■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | December 2011 | 2.2 | ■ Added Table 2–31. | | | | ■ Updated Table 2–28 and Table 2–34. | | November 2011 | 2.1 | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices. | | | | ■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | | ■ Various edits throughout to fix SPRs. | | May 2011 | 2.0 | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24. | | | | ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title. | | | | ■ Chapter moved to Volume 1. | | | | ■ Minor text edits. | | December 2010 | 1.1 | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | | | Converted chapter to the new template. | | | | ■ Minor text edits. | | July 2010 | 1.0 | Initial release. |