Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 234720 | | Number of Logic Elements/Cells | 622000 | | Total RAM Bits | 51200000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma7n3f40i3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|-------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | neceiver analog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | \ \ \ | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog newer cupply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (left side) | dx, do, di | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | | | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | | 0.87 | 0.90 | 0.93 | | | (2) | Transmitter analog power supply (right side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | #### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true (1): | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | #### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ### **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ### **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Electrical Characteristics Page 9 ## I/O Pin Leakage Current Table 9 lists the Stratix V I/O pin leakage current specifications. Table 9. I/O Pin Leakage Current for Stratix V Devices (1) | Symbol | Description | Description Conditions Min | | Тур | Max | Unit | |-----------------|--------------------|--|-----|-----|-----|------| | I _I | Input pin | $V_I = 0 V to V_{CCIOMAX}$ | -30 | _ | 30 | μΑ | | I _{OZ} | Tri-stated I/O pin | $V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$ | -30 | | 30 | μΑ | #### Note to Table 9: (1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μA of leakage current per I/O is expected. ## **Bus Hold Specifications** Table 10 lists the Stratix V device family bus hold specifications. Table 10. Bus Hold Parameters for Stratix V Devices | | | Conditions | | V _{CCIO} | | | | | | | | | | |-------------------------------|-------------------|--|-------|-------------------|-------|------|-------|------|-------|------|-------|------|------| | Parameter | Symbol | | 1.2 V | | 1.5 V | | 1.8 V | | 2.5 V | | 3.0 V | | Unit | | | | | Min | Max | | | Low
sustaining
current | I _{SUSL} | V _{IN} > V _{IL}
(maximum) | 22.5 | _ | 25.0 | _ | 30.0 | _ | 50.0 | _ | 70.0 | _ | μА | | High
sustaining
current | I _{SUSH} | V _{IN} < V _{IH}
(minimum) | -22.5 | _ | -25.0 | _ | -30.0 | _ | -50.0 | | -70.0 | | μА | | Low
overdrive
current | I _{ODL} | 0V < V _{IN} < V _{CCIO} | _ | 120 | _ | 160 | _ | 200 | _ | 300 | _ | 500 | μА | | High
overdrive
current | I _{ODH} | 0V < V _{IN} < V _{CCIO} | _ | -120 | _ | -160 | _ | -200 | _ | -300 | _ | -500 | μА | | Bus-hold
trip point | V_{TRIP} | _ | 0.45 | 0.95 | 0.50 | 1.00 | 0.68 | 1.07 | 0.70 | 1.70 | 0.80 | 2.00 | V | ## **On-Chip Termination (OCT) Specifications** If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications. Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 1 of 2) | | | | Calibration Accuracy | | | | | | |---------------------|---|--|----------------------|-------|----------------|-------|------|--| | Symbol | Description | Conditions | C 1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | | 25-Ω R _S | Internal series termination with calibration (25- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | | |--------|--|-----------------------|---------|------|--| | | | 3.0 | 0.189 | | | | | | 2.5 | 0.208 | %/°C | | | dR/dT | OCT variation with temperature without recalibration | 1.8 | 0.266 | | | | | Willout recalibration | 1.5 | 0.273 | 1 | | | | | 1.2 | 0.317 | | | #### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ ## **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Description | Value | Unit | |--------------------|--|-------|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | ### **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | ## Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | | | | - | 1.4-V ar | nd 1.5-V PC | ML | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Table 24 shows the maximum transmitter data rate for the clock network. Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1) | | | ATX PLL | | | CMU PLL (2) |) | | fPLL | | |-----------------------------------|----------------------------------|--------------------------|--|----------------------------------|--------------------------|-------------------------|----------------------------------|--------------------------|-------------------------| | Clock Network | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | | x1 ⁽³⁾ | 14.1 | _ | 6 | 12.5 | _ | 6 | 3.125 | _ | 3 | | x6 ⁽³⁾ | _ | 14.1 | 6 | _ | 12.5 | 6 | _ | 3.125 | 6 | | x6 PLL
Feedback ⁽⁴⁾ | _ | 14.1 | Side-
wide | _ | 12.5 | Side-
wide | _ | _ | _ | | xN (PCIe) | _ | 8.0 | 8 | _ | 5.0 | 8 | _ | _ | _ | | xN (Native PHY IP) | 8.0 | 8.0 | Up to 13
channels
above
and
below
PLL | 7.99 | 7.99 | Up to 13 channels above | 3.125 | 3.125 | Up to 13 channels above | | AN (NAUVE FITTIF) | П | 8.01 to
9.8304 | Up to 7
channels
above
and
below
PLL | · 7.55 | 7.88 | and
below
PLL | 3.123 | | and
below
PLL | #### Notes to Table 24: ⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation. ⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance. ⁽³⁾ Channel span is within a transceiver bank. ⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP. Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$ | Symbol/ | Conditions | S | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|---|--------|--------------------------|--------------|--------------|--------------------------|-------------|----------| | Description | | Min | Тур | Max | Min | Тур | Max | 1 | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | | | Transmitter REFCLK | 1 kHz | _ | _ | -90 | | _ | -90 | | | Phase Noise (622 | 10 kHz | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | MHz) ⁽¹⁸⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | | | | ≥1 MHz | | _ | -120 | _ | | -120 | 1 | | Transmitter REFCLK
Phase Jitter (100
MHz) ⁽¹⁵⁾ | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | ps (rms) | | RREF (17) | _ | _ | 1800
± 1% | _ | _ | 1800
± 1% | _ | Ω | | Transceiver Clocks | | | | | | | | | | fixedclk clock
frequency | PCIe
Receiver
Detect | _ | 100 or
125 | _ | _ | 100 or
125 | _ | MHz | | Reconfiguration clock
(mgmt_clk_clk)
frequency | | 100 | _ | 125 | 100 | | 125 | MHz | | Receiver | | | | | | | | | | Supported I/O
Standards | _ | | 1.4-V PCML | , 1.5-V PCML | _, 2.5-V PCI | ML, LVPEC | L, and LVDS | 6 | | Data rate
(Standard PCS) (21) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) (21) | GX channels | 600 | _ | 12,500 | 600 | _ | 12,500 | Mbps | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Absolute V _{MAX} for a receiver pin ⁽³⁾ | GT channels | _ | _ | 1.2 | | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | GT channels | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-to-peak | GT channels | | _ | 1.6 | _ | | 1.6 | V | | differential input
voltage V _{ID} (diff p-p)
before device
configuration ⁽²⁰⁾ | GX channels | | | | (8) | | | | | | GT channels | | | | | | | | | Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20) | $V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$ | _ | _ | 2.2 | _ | _ | 2.2 | V | | oomiguration ', ' / | GX channels | | | | (8) | | • | • | | Minimum differential | GT channels | 200 | _ | _ | 200 | | _ | mV | | eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾ | GX channels | | | | (8) | | | | Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceiver
Speed Grade | | | Transceive
peed Grade | | Unit | |---|----------------------------------|-----|----------------------------|--------|-------------|--------------------------|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | Differential on-chip termination resistors | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | for GX channels (19) | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | VICM (AC and DC coupled) for GX Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | nuii Leiigiii | GX channels | | | | (8) | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ | 1000 | ± PPM | | ODITITIVI | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | Transmitter | · ' | | • | | | • | • | | | Supported I/O
Standards | _ | | | 1.4-V | and 1.5-V F | PCML | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | Intra-differential pair
skew | GX channels | | | | (8) | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | (8) | | | | | | | | CMU PLL | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | • | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | Figure 6 shows the Stratix V DC gain curves for GT channels. ## Figure 6. DC Gain Curves for GT Channels ## **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI # **PLL Specifications** Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C). Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------|--|-----|-----|--------------------|------| | | Input clock frequency (C1, C2, C2L, I2, and I2L speed grades) | 5 | _ | 800 (1) | MHz | | f _{IN} | Input clock frequency (C3, I3, I3L, and I3YY speed grades) | 5 | _ | 800 (1) | MHz | | | Input clock frequency (C4, I4 speed grades) | 5 | _ | 650 ⁽¹⁾ | MHz | | f _{INPFD} | Input frequency to the PFD | 5 | _ | 325 | MHz | | FINPFD | Fractional Input clock frequency to the PFD | 50 | _ | 160 | MHz | | | PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades) | 600 | _ | 1600 | MHz | | f _{vco} ⁽⁹⁾ | PLL VCO operating range (C3, I3, I3L, I3YY speed grades) | 600 | _ | 1600 | MHz | | | PLL VCO operating range (C4, I4 speed grades) | 600 | _ | 1300 | MHz | | EINDUTY | Input clock or external feedback clock input duty cycle | 40 | _ | 60 | % | | | Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 717 (2) | MHz | | f _{out} | Output frequency for an internal global or regional clock (C3, I3, I3L speed grades) | _ | _ | 650 ⁽²⁾ | MHz | | | Output frequency for an internal global or regional clock (C4, I4 speed grades) | _ | _ | 580 ⁽²⁾ | MHz | | | Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 800 (2) | MHz | | f _{OUT_EXT} | Output frequency for an external clock output (C3, I3, I3L speed grades) | _ | _ | 667 (2) | MHz | | | Output frequency for an external clock output (C4, I4 speed grades) | _ | _ | 553 ⁽²⁾ | MHz | | t _{оитриту} | Duty cycle for a dedicated external clock output (when set to 50%) | 45 | 50 | 55 | % | | FCOMP | External feedback clock compensation time | _ | _ | 10 | ns | | DYCONFIGCLK | Dynamic Configuration Clock used for mgmt_clk and scanclk | _ | _ | 100 | MHz | | Lock | Time required to lock from the end-of-device configuration or deassertion of areset | _ | _ | 1 | ms | | DLOCK | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _ | _ | 1 | ms | | | PLL closed-loop low bandwidth | | 0.3 | | MHz | | :
CLBW | PLL closed-loop medium bandwidth | | 1.5 | | MHz | | | PLL closed-loop high bandwidth (7) | _ | 4 | _ | MHz | | PLL_PSERR | Accuracy of PLL phase shift | | _ | ±50 | ps | | ARESET | Minimum pulse width on the areset signal | 10 | _ | _ | ns | Page 48 Switching Characteristics Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled. Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled Table 37 lists the DPA lock time specifications for Stratix V devices. Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3) | Standard | Training Pattern | Number of Data
Transitions in One
Repetition of the
Training Pattern | Number of
Repetitions per 256
Data Transitions ⁽⁴⁾ | Maximum | |--------------------|----------------------|---|---|----------------------| | SPI-4 | 00000000001111111111 | 2 | 128 | 640 data transitions | | Parallel Rapid I/O | 00001111 | 2 | 128 | 640 data transitions | | Faranei napiu 1/0 | 10010000 | 4 | 64 | 640 data transitions | | Miscellaneous | 10101010 | 8 | 32 | 640 data transitions | | IVIISCEIIAITEOUS | 01010101 | 8 | 32 | 640 data transitions | #### Notes to Table 37: - (1) The DPA lock time is for one channel. - (2) One data transition is defined as a 0-to-1 or 1-to-0 transition. - (3) The DPA lock time stated in this table applies to both commercial and industrial grade. - (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions. Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification 25 8.5 0.35 0.1 F1 F2 F3 F4 Jitter Frequency (Hz) Page 50 Switching Characteristics Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2) | Speed Grade | Min | Max | Unit | |-------------|-----|-----|------| | C4,I4 | 8 | 16 | ps | #### Notes to Table 40: - (1) The typical value equals the average of the minimum and maximum values. - (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps. Table 41 lists the DQS phase shift error for Stratix V devices. Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1) | Number of DQS Delay
Buffers | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |--------------------------------|-----|------------------|-------------------|-------|------| | 1 | 28 | 28 | 30 | 32 | ps | | 2 | 56 | 56 | 60 | 64 | ps | | 3 | 84 | 84 | 90 | 96 | ps | | 4 | 112 | 112 | 120 | 128 | ps | #### Notes to Table 41: Table 42 lists the memory output clock jitter specifications for Stratix V devices. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3) | Clock
Network | Parameter Symbol | | C1 C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | | | |------------------|------------------------------|------------------------|---------------------|-----|----------------------|-----|-------|------|-------|------|----| | NEIWUIK | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -50 | 50 | -50 | 50 | -55 | 55 | -55 | 55 | ps | | Regional | Cycle-to-cycle period jitter | t _{JIT(cc)} | -100 | 100 | -100 | 100 | -110 | 110 | -110 | 110 | ps | | | Duty cycle jitter | $t_{JIT(duty)}$ | -50 | 50 | -50 | 50 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | | Clock period jitter | t _{JIT(per)} | -75 | 75 | - 75 | 75 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | Global | Cycle-to-cycle period jitter | t _{JIT(cc)} | -150 | 150 | -150 | 150 | -165 | 165 | -165 | 165 | ps | | | Duty cycle jitter | t _{JIT(duty)} | - 75 | 75 | -75 | 75 | -90 | 90 | -90 | 90 | ps | ⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps. Page 58 Configuration Specification Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1. Table 50. FPP Timing Parameters for Stratix V Devices (1) | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μ\$ | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽³⁾ | μ\$ | | t _{CF2CK} (6) | nCONFIG high to first rising edge on DCLK | 1,506 | _ | μ\$ | | t _{ST2CK} (6) | nSTATUS high to first rising edge of DCLK | 2 | _ | μ\$ | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (4) | 175 | 437 | μS | | + | GOVER DOVER high to GUVERN anabled | 4 × maximum | | | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾ | _ | _ | #### Notes to Table 50: - (1) Use these timing parameters when the decompression and design security features are disabled. - (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (3) This value is applicable if you do not delay configuration by externally holding the nstatus low. - (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device. - (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. ## FPP Configuration Timing when DCLK-to-DATA [] > 1 Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1. Configuration Specification Page 59 Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2) #### Notes to Figure 13: - (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55. - (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55. - (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge. - (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 60 Configuration Specification Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1. Table 51. FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1 $^{(1)}$ | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nconfig low to conf_done low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μS | | t _{CF2ST1} | nconfig high to nstatus high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nconfig high to first rising edge on DCLK | 1,506 | _ | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | N-1/f _{DCLK} ⁽⁵⁾ | _ | S | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _R | Input rise time | _ | 40 | ns | | t _F | Input fall time | _ | 40 | ns | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} +
(8576 × CLKUSR
period) ⁽⁴⁾ | _ | _ | #### Notes to Table 51: - (1) Use these timing parameters when you use the decompression and design security features. - (2) You can obtain this value if you do not delay configuration by extending the nconfig or nstatus low pulse width. - (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 64 I/O Timing # **Remote System Upgrades** Table 56 lists the timing parameter specifications for the remote system upgrade circuitry. **Table 56. Remote System Upgrade Circuitry Timing Specifications** | Parameter | Minimum | Maximum | Unit | |------------------------------|---------|---------|------| | t _{RU_nCONFIG} (1) | 250 | _ | ns | | t _{RU_nRSTIMER} (2) | 250 | _ | ns | #### Notes to Table 56: - (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **User Watchdog Internal Circuitry Timing Specification** Table 57 lists the operating range of the 12.5-MHz internal oscillator. Table 57. 12.5-MHz Internal Oscillator Specifications | Minimum | Typical | Maximum | Units | |---------|---------|---------|-------| | 5.3 | 7.9 | 12.5 | MHz | # I/O Timing Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer. Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route. You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page. # **Programmable IOE Delay** Table 58 lists the Stratix V IOE programmable delay settings. Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2) | Parameter | Available
Settings | Min
Offset | Fast Model | | Slow Model | | | | | | | | |-----------|-----------------------|---------------|------------|------------|------------|-------|-------|-------|-------|-------------|-------|------| | | | | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D1 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D2 | 32 | 0 | 0.230 | 0.244 | 0.415 | 0.415 | 0.459 | 0.503 | 0.417 | 0.456 | 0.500 | ns | Document Revision History Page 69 # **Document Revision History** Table 61 lists the revision history for this chapter. Table 61. Document Revision History (Part 1 of 3) | Date Version | | Changes | | | | | | | |---------------|-----|---|--|--|--|--|--|--| | June 2018 | 3.9 | ■ Added the "Stratix V Device Overshoot Duration" figure. | | | | | | | | | | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. | | | | | | | | | 3.8 | ■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. | | | | | | | | April 2017 | | ■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table | | | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | | | | ■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. | | | | | | | | June 2016 | 3.7 | ■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table | | | | | | | | Julie 2016 | | ■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. | | | | | | | | December 2015 | 3.6 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | | | December 2015 | 3.5 | ■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | December 2013 | | ■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. | | | | | | | | | | ■ Changed the data rate specification for transceiver speed grade 3 in the following tables: | | | | | | | | | | "Transceiver Specifications for Stratix V GX and GS Devices" | | | | | | | | | | ■ "Stratix V Standard PCS Approximate Maximum Date Rate" | | | | | | | | | | ■ "Stratix V 10G PCS Approximate Maximum Data Rate" | | | | | | | | July 2015 | 3.4 | ■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | - | | Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | | | ■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. | | | | | | | | | | ■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | |