Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 317000 | | Number of Logic Elements/Cells | 840000 | | Total RAM Bits | 53248000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-HBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma9k1h40i2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | neceiver arialog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog newer cupply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | | Transmitter analog power supply (left side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | | | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | | 0.87 | 0.90 | 0.93 | | | (2) | Transmitter analog power supply (right side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | #### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Electrical Characteristics Page 11 | Symbol | | | Re | , | | | | |----------------------|--|-----------------------------------|-----|-------|-----------------|--------|------| | | Description | Conditions | C1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | 100-Ω R _D | Internal differential termination (100-Ω setting) | V _{CCPD} = 2.5 V | ±25 | ±25 | ±25 | ±25 | % | Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change. OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration. Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6) $$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$ ### Notes to Equation 1: - (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} . - (2) R_{SCAL} is the OCT resistance value at power-up. - (3) ΔT is the variation of temperature with respect to the temperature at power-up. - (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up. - (5) dR/dT is the percentage change of R_{SCAL} with temperature. - (6) dR/dV is the percentage change of R_{SCAL} with voltage. Table 13 lists the on-chip termination variation after power-up calibration. Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.0297 | | | | OCT variation with voltage without recalibration | 2.5 | 0.0344 | | | dR/dV | | 1.8 | 0.0499 | %/mV | | | Todanstation | 1.5 | 0.0744 | | | | | 1.2 | 0.1241 | | Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | cription V _{CC10} (V) Typical | | | | | |--------|--|--|-------|------|--|--| | | | 3.0 | 0.189 | | | | | | OCT variation with temperature without recalibration | 2.5 | 0.208 | | | | | dR/dT | | 1.8 | 0.266 | %/°C | | | | | Willout recalibration | 1.5 | 0.273 | 1 | | | | | | 1.2 | 0.317 | | | | #### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ ### **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Description | Value | Unit | |--------------------|--|-------|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | ### **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | ### Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Electrical Characteristics Page 15 Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2) | I/O Standard | V _{IL(DC)} (V) | | V _{IH(D} | _{C)} (V) | V _{IL(AC)} (V) | V _{IH(AC)} (V) | V _{OL} (V) | V _{OH} (V) | I _{ol} (mA) | l _{oh} | |---------------------|-------------------------|---------------------------|-------------------------|--------------------------|----------------------------|-------------------------|----------------------------|----------------------------|------------------------|-----------------| | i/O Stanuaru | Min | Max | Min | Max | Max | Min | Max | Min | I _{OI} (IIIA) | (mA) | | HSTL-18
Class I | _ | V _{REF} –
0.1 | V _{REF} + 0.1 | _ | V _{REF} - 0.2 | V _{REF} + 0.2 | 0.4 | V _{CCIO} – 0.4 | 8 | -8 | | HSTL-18
Class II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} - 0.2 | V _{REF} + 0.2 | 0.4 | V _{CCIO} – 0.4 | 16 | -16 | | HSTL-15
Class I | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} - 0.2 | V _{REF} + 0.2 | 0.4 | V _{CCIO} – 0.4 | 8 | -8 | | HSTL-15
Class II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} - 0.2 | V _{REF} + 0.2 | 0.4 | V _{CCIO} – 0.4 | 16 | -16 | | HSTL-12
Class I | -0.15 | V _{REF} – 0.08 | V _{REF} + 0.08 | V _{CCIO} + 0.15 | V _{REF} – 0.15 | V _{REF} + 0.15 | 0.25*
V _{CCIO} | 0.75*
V _{CCIO} | 8 | -8 | | HSTL-12
Class II | -0.15 | V _{REF} – 0.08 | V _{REF} + 0.08 | V _{CCIO} + 0.15 | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.25*
V _{CCIO} | 0.75*
V _{CCIO} | 16 | -16 | | HSUL-12 | _ | V _{REF} – 0.13 | V _{REF} + 0.13 | _ | V _{REF} – 0.22 | V _{REF} + 0.22 | 0.1*
V _{CCIO} | 0.9*
V _{CCIO} | _ | | Table 20. Differential SSTL I/O Standards for Stratix V Devices | I/O Standard | V _{CCIO} (V) | | | V _{SWIN} | V _{SWING(DC)} (V) | | V _{X(AC)} (V) | | V _{SWING(AC)} (V) | | | |-------------------------
-----------------------|------|-------|-------------------|----------------------------|------------------------------|------------------------|------------------------------|--|---|--| | I/O Standard | Min | Тур | Max | Min | Max | Min | Тур | Max | Min | Max | | | SSTL-2 Class
I, II | 2.375 | 2.5 | 2.625 | 0.3 | V _{CCIO} + 0.6 | V _{CCIO} /2 – 0.2 | _ | V _{CCIO} /2 + 0.2 | 0.62 | V _{CCIO} + 0.6 | | | SSTL-18 Class
I, II | 1.71 | 1.8 | 1.89 | 0.25 | V _{CCIO} + 0.6 | V _{CCIO} /2 – 0.175 | _ | V _{CCIO} /2 + 0.175 | 0.5 | V _{CCIO} + 0.6 | | | SSTL-15 Class
I, II | 1.425 | 1.5 | 1.575 | 0.2 | (1) | V _{CCIO} /2 – 0.15 | _ | V _{CCIO} /2 + 0.15 | 0.35 | _ | | | SSTL-135
Class I, II | 1.283 | 1.35 | 1.45 | 0.2 | (1) | V _{CCIO} /2 – 0.15 | V _{CCIO} /2 | V _{CCIO} /2 + 0.15 | 2(V _{IH(AC)} - V _{REF}) | 2(V _{IL(AC)}
- V _{REF}) | | | SSTL-125
Class I, II | 1.19 | 1.25 | 1.31 | 0.18 | (1) | V _{CCIO} /2 – 0.15 | V _{CCIO} /2 | V _{CCIO} /2 + 0.15 | 2(V _{IH(AC)} - V _{REF}) | _ | | | SSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.18 | _ | V _{REF}
-0.15 | V _{CCIO} /2 | V _{REF} + 0.15 | -0.30 | 0.30 | | ### Note to Table 20: Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 1 of 2) | I/O | I/O V _{CC10} (V) | | V _{DIF(} | _{DC)} (V) | V _{X(AC)} (V) | | | V _{CM(DC)} (V) | | | V _{DIF(AC)} (V) | | | |------------------------|---------------------------|-----|-------------------|--------------------|------------------------|------|-----|-------------------------|------|-----|--------------------------|-----|-----| | Standard | Min | Тур | Max | Min | Max | Min | Тур | Max | Min | Тур | Max | Min | Max | | HSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.2 | _ | 0.78 | _ | 1.12 | 0.78 | _ | 1.12 | 0.4 | _ | | HSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.2 | | 0.68 | _ | 0.9 | 0.68 | | 0.9 | 0.4 | _ | ⁽¹⁾ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)})$ and $V_{IL(DC)})$. Page 16 Electrical Characteristics Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2) | I/O V _{CCIO} (V) | | | V _{DIF(DC)} (V) | | V _{X(AC)} (V) | | | | V _{CM(DC)} (V | V _{DIF(AC)} (V) | | | | |---------------------------|------|-----|--------------------------|------|-------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------|---------------------------|------|-----------------------------| | Standard | Min | Тур | Max | Min | Max | Min | Тур | Max | Min | Тур | Max | Min | Max | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.16 | V _{CCIO} + 0.3 | _ | 0.5*
V _{CCIO} | _ | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.3 | V _{CCIO}
+ 0.48 | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.26 | 0.26 | 0.5*V _{CCIO}
- 0.12 | 0.5*
V _{CCIO} | 0.5*V _{CCIO}
+ 0.12 | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.44 | 0.44 | Table 22. Differential I/O Standard Specifications for Stratix V Devices (7) | I/O | Vc | _{CIO} (V) | (10) | | V _{ID} (mV) ⁽⁸⁾ | | | $V_{ICM(DC)}$ (V) | | V _{OD} (V) ⁽⁶⁾ | | | V _{OCM} (V) ⁽⁶⁾ | | | |------------------------------|-------|--------------------|-------|-----|-------------------------------------|-----|------|--------------------------------|-------|------------------------------------|-----|-----|-------------------------------------|------|-------| | Standard | Min | Тур | Max | Min | Condition | Max | Min | Condition | Max | Min | Тур | Max | Min | Тур | Max | | PCML | Trar | nsmitte | | | | | | of the high-s
I/O pin speci | | | | | | | . For | | 2.5 V | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = | _ | 0.05 | D _{MAX} ≤ 700 Mbps | 1.8 | 0.247 | | 0.6 | 1.125 | 1.25 | 1.375 | | LVDS (1) | 2.373 | 2.3 | 2.023 | 100 | 1.25 V | | 1.05 | D _{MAX} > 700 Mbps | 1.55 | 0.247 | _ | 0.6 | 1.125 | 1.25 | 1.375 | | BLVDS (5) | 2.375 | 2.5 | 2.625 | 100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | RSDS
(HIO) ⁽²⁾ | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = 1.25 V | _ | 0.3 | _ | 1.4 | 0.1 | 0.2 | 0.6 | 0.5 | 1.2 | 1.4 | | Mini-
LVDS
(HIO) (3) | 2.375 | 2.5 | 2.625 | 200 | _ | 600 | 0.4 | _ | 1.325 | 0.25 | _ | 0.6 | 1 | 1.2 | 1.4 | | LVPECL (4 | _ | _ | _ | 300 | _ | _ | 0.6 | D _{MAX} ≤ 700 Mbps | 1.8 | _ | _ | _ | _ | _ | _ | |), (9) | _ | _ | _ | 300 | _ | _ | 1 | D _{MAX} > 700 Mbps | 1.6 | _ | _ | _ | _ | _ | _ | #### Notes to Table 22: - (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps. - (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V. - (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V. - (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps. - (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology. - (6) RL range: $90 \le RL \le 110 \Omega$. - (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18. - (8) The minimum VID value is applicable over the entire common mode range, VCM. - (9) LVPECL is only supported on dedicated clock input pins. - (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$ # **Power Consumption** Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature. Switching Characteristics Page 25 Table 24 shows the maximum transmitter data rate for the clock network. Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1) | | | ATX PLL | | | CMU PLL (2) |) | | fPLL | | |-----------------------------------|----------------------------------|--------------------------|--|----------------------------------|--------------------------|-------------------------|----------------------------------|--------------------------|-------------------------| | Clock Network | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | | x1 ⁽³⁾ | 14.1 | _ | 6 | 12.5 | _ | 6 | 3.125 | _ | 3 | | x6 ⁽³⁾ | _ | 14.1 | 6 | _ | 12.5 | 6 | _ | 3.125 | 6 | | x6 PLL
Feedback ⁽⁴⁾ | _ | 14.1 | Side-
wide | _ | 12.5 | Side-
wide | _ | _ | _ | | xN (PCIe) | _ | 8.0 | 8 | _ | 5.0 | 8 | _ | _ | _ | | xN (Native PHY IP) | 8.0 | 8.0 | Up to 13
channels
above
and
below
PLL | 7.99 | 7.99 | Up to 13 channels above | 3.125 | 3.125 | Up to 13 channels above | | AN (NAUVE FITTIF) | П | 8.01 to
9.8304 | Up to 7
channels
above
and
below
PLL | · 7.55 | 7.88 | and
below
PLL | 3.123 | 3.123 | and
below
PLL | #### Notes to Table 24: ⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation. ⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance. ⁽³⁾ Channel span is within a transceiver bank. ⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP. Switching Characteristics Page 29 Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceiver
Speed Grade | | | Transceive
peed Grade | | Unit | |---|----------------------------------|-----|----------------------------|--------|-------------|--------------------------|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | Differential on-chip termination resistors | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | for GX channels (19) | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | VICM (AC and DC coupled) for GX Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | nuii Leiigiii | GX channels | | | | (8) | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ |
1000 | ± PPM | | ODITITIVI | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | Transmitter | · ' | | • | | | • | • | | | Supported I/O
Standards | _ | | | 1.4-V | and 1.5-V F | PCML | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | Page 36 Switching Characteristics Figure 4 shows the differential transmitter output waveform. Figure 4. Differential Transmitter/Receiver Output/Input Waveform Figure 5 shows the Stratix V AC gain curves for GT channels. Figure 5. AC Gain Curves for GT Channels Page 42 Switching Characteristics Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2) | | | | I | Peformano | e | | | | | | | |-----------------------|------------------------|---------|---------|-----------|------------------|-----|-----|------|--|--|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | | Modes using Three DSPs | | | | | | | | | | | | One complex 18 x 25 | 425 | 425 | 415 | 340 | 340 | 275 | 265 | MHz | | | | | Modes using Four DSPs | | | | | | | | | | | | | One complex 27 x 27 | 465 | 465 | 465 | 380 | 380 | 300 | 290 | MHz | | | | # **Memory Block Specifications** Table 33 lists the Stratix V memory block specifications. Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2) | | | Resour | ces Used | Performance | | | | | | | | | |--------|------------------------------------|--------|----------|-------------|------------|-----|-----|---------|---------------------|-----|------|--| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, I2L | 13,
13L,
13YY | 14 | Unit | | | | Single port, all supported widths | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | | MLAB | Simple dual-port,
x32/x64 depth | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | | IVILAD | Simple dual-port, x16 depth (3) | 0 | 1 | 675 | 675 | 533 | 400 | 675 | 533 | 400 | MHz | | | | ROM, all supported widths | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | | Switching Characteristics Page 43 Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2) | | | Resour | ces Used | | | Pe | erforman | ce | | | | |---------------|---|--------|----------|-----|------------|-----|----------|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, 12L | 13,
13L,
13YY | 14 | Unit | | | Single-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port with
the read-during-write
option set to Old Data ,
all supported widths | 0 | 1 | 525 | 525 | 455 | 400 | 525 | 455 | 400 | MHz | | M20K
Block | Simple dual-port with ECC enabled, 512 × 32 | 0 | 1 | 450 | 450 | 400 | 350 | 450 | 400 | 350 | MHz | | | Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32 | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | | | True dual port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | ROM, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | #### Notes to Table 33: ### **Temperature Sensing Diode Specifications** Table 34 lists the internal TSD specification. **Table 34. Internal Temperature Sensing Diode Specification** | Tei | mperature
Range | Accuracy | Offset
Calibrated
Option | Sampling Rate | Conversion
Time | Resolution | Minimum
Resolution
with no
Missing Codes | |------|--------------------|----------|--------------------------------|----------------|--------------------|------------|---| | -40° | °C to 100°C | ±8°C | No | 1 MHz, 500 KHz | < 100 ms | 8 bits | 8 bits | Table 35 lists the specifications for the Stratix V external temperature sensing diode. Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices | Description | Min | Тур | Max | Unit | |--|-------|-------|-------|------| | I _{bias} , diode source current | 8 | _ | 200 | μΑ | | V _{bias,} voltage across diode | 0.3 | _ | 0.9 | V | | Series resistance | _ | _ | <1 | Ω | | Diode ideality factor | 1.006 | 1.008 | 1.010 | _ | ⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes. ⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}. ⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled. Page 44 Switching Characteristics ## **Periphery Performance** This section describes periphery performance, including high-speed I/O and external memory interface. I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load. The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system. ### **High-Speed I/O Specification** Table 36 lists high-speed I/O timing for Stratix V devices. Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4) | _ | | | | | | | | | | | | | | | |--|---------------------------------------|-----|-----|-----|-----|--------|--------|-----|---------|------------|-----|------|------------|-------| | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | | C4,I | 4 | Unit | | Symbol | Conuntions | Min | Тур | Max | UIIIL | | f _{HSCLK_in} (input
clock
frequency)
True
Differential
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O
Standards ⁽³⁾ | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 520 | 5 | _ | 520 | 5 | | 420 | 5 | | 420 | MHz | | f _{HSCLK_OUT}
(output clock
frequency) | _ | 5 | | 800 | 5 | _ | 800 | 5 | | 625
(5) | 5 | | 525
(5) | MHz | Page 46 Switching Characteristics Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4) | | | | C1 | | C2, | C2L, I | 2, I2L | C3, I3, I3L, I3YY | | | C4,I4 | | | | |---------------------------------------|---|-----|-----|------|-----|--------|--------|-------------------|-----|------|-------|-----|------|------| | Symbol | Conditions | Min | Тур | Max | Unit | | t _{DUTY} | Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | | True Differential
I/O Standards | _ | _ | 160 | _ | _ | 160 | _ | _ | 200 | _ | _ | 200 | ps | | t _{RISE} & t _{FALL} | Emulated Differential I/O Standards with three external output resistor networks | _ | | 250 | _ | _ | 250 | _ | | 250 | _ | | 300 | ps | | | True Differential
I/O Standards | _ | _ | 150 | _ | | 150 | | _ | 150 | | _ | 150 | ps | | TCCS | Emulated
Differential I/O
Standards | _ | _ | 300 | _ | _ | 300 | _ | | 300 | _ | | 300 | ps | | Receiver | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (11), (12),
(13), (14), (15), (16) | 150 | _ | 1434 | 150 | _ | 1434 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16) | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1250 | Mbps | | - f _{HSDRDPA}
(data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | _ | (7) | Mbps | Switching Characteristics Page 49 Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | requency (Hz) | Sinusoidal Jitter (UI) | |----------|---------------|------------------------| | F1 | 10,000 | 25.000 | | F2 | 17,565 | 25.000 | | F3 | 1,493,000 | 0.350 | | F4 | 50,000,000 | 0.350 | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps ### DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.
Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | #### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Configuration Specification Page 55 Table 48. Minimum Configuration Time Estimation for Stratix V Devices | Variant | Member
Code | Active Serial ⁽¹⁾ | | Fast Passive Parallel (2) | | | | |---------|----------------|------------------------------|------------|---------------------------|-------|------------|------------------------| | | | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | GS | D3 | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | D4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | D5 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | D6 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | D8 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | E | E9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | C C | EB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | ### Notes to Table 48: ### **Fast Passive Parallel Configuration Timing** This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices. ### DCLK-to-DATA[] Ratio for FPP Configuration FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination. Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | FPP ×8 | Disabled | Disabled | 1 | | | Disabled | Enabled | 1 | | | Enabled | Disabled | 2 | | | Enabled | Enabled | 2 | | FPP ×16 | Disabled | Disabled | 1 | | | Disabled | Enabled | 2 | | | Enabled | Disabled | 4 | | | Enabled | Enabled | 4 | ⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR. ⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic. Configuration Specification Page 57 ### FPP Configuration Timing when DCLK-to-DATA [] = 1 Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1. Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2) #### Notes to Figure 12: - (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1. - (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. - (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings. - (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (8) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low. Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ### **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 68 Glossary ### Table 60. Glossary (Part 4 of 4) | Letter | Subject | Definitions | |--------|------------------------|--| | | V _{CM(DC)} | DC common mode input voltage. | | | V _{ICM} | Input common mode voltage—The common mode of the differential signal at the receiver. | | | V _{ID} | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver. | | | V _{DIF(AC)} | AC differential input voltage—Minimum AC input differential voltage required for switching. | | | V _{DIF(DC)} | DC differential input voltage— Minimum DC input differential voltage required for switching. | | | V _{IH} | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high. | | | V _{IH(AC)} | High-level AC input voltage | | | V _{IH(DC)} | High-level DC input voltage | | V | V _{IL} | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low. | | | V _{IL(AC)} | Low-level AC input voltage | | | V _{IL(DC)} | Low-level DC input voltage | | | V _{OCM} | Output common mode voltage—The common mode of the differential signal at the transmitter. | | | V _{OD} | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. | | | V _{SWING} | Differential input voltage | | | V _X | Input differential cross point voltage | | | V _{OX} | Output differential cross point voltage | | W | W | High-speed I/O block—clock boost factor | | Χ | | | | Υ | | _ | | Z | | | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date | Version | Changes | |---------------|---------|---| | | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | ■ Added 240-Ω to Table 11. | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | ■ Added additional max data rate for fPLL in Table 23. | | November 2014 | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | ■ Changed the
mode descriptions for MLAB and M20K in Table 33. | | | | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | | 3.3 | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | ■ Added note about nSTATUS to Table 50, Table 51, Table 54. | | | | ■ Changed the available settings in Table 58. | | | | ■ Changed the note in "Periphery Performance". | | | | ■ Updated the "I/O Standard Specifications" section. | | | | ■ Updated the "Raw Binary File Size" section. | | | | ■ Updated the receiver voltage input range in Table 22. | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | ■ Updated the DCLK note to Figure 11. | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | ■ Updated Table 6 and Table 7. | | | | ■ Added the DCLK specification to Table 55. | | | | ■ Updated the notes for Table 47. | | | | ■ Updated the list of parameters for Table 56. | | November 2013 | 3.2 | ■ Updated Table 28 | | November 2013 | 3.1 | ■ Updated Table 33 | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | | | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | October 2013 | 2.8 | ■ Added Figure 1 and Figure 3 | | 2.00 | | ■ Added the "Transceiver Characterization" section | | | | ■ Removed all "Preliminary" designations. | Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 2013 2.7 ■ Added Table 24, Table 48 ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 46 ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, TaTable 30, Table 32, Table 35 ■ Added Table 33 ■ Added "Fast Passive Parallel Configuration Timing" ■ Added "Added "Passive Serial Configuration Timing" ■ Added "Passive Serial Configuration Timing" ■ Added "Remote System Upgrades" ■ Added "Initialization" ■ Added "Initialization" ■ Added "Raw Binary File Size" ■ Added Figure 1, Figure 2, and Figure 3. ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 40, Table 4 Table 56, and Table 59. ■ Various edits throughout to fix bugs. | | |--|-----------| | December 2012 2.5 December 2012 D | able 60 | | December 2012 2.6 Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 46 Updated "Maximum Allowed Overshoot and Undershoot Voltage" Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Tatable 30, Table 32, Table 35 Added Table 33 Added "Fast Passive Parallel Configuration Timing" Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Raw Binary File Size" Added "Raw Binary File Size" Added Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | Table 46 Updated "Maximum Allowed Overshoot and Undershoot Voltage" Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Ta Table 30, Table 32, Table 35 Added Table 33 Added "Fast Passive Parallel Configuration Timing" Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 40, Table 40, Table 40, Table 56, and Table 59. | | | Updated "Maximum Allowed Overshoot and Undershoot Voltage" Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Ta Table 30, Table 32, Table 35 Added Table 33 Added "Fast Passive Parallel Configuration Timing" Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 40, Table 40, Table 40, Table 56, and Table 59. | Table 35, | | December 2012 2.5 Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 30, Table 32, Table 35 Added Table 33 Added "Fast Passive Parallel Configuration Timing" Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 7, Table 30, Table 31, Table 32, Table 38, Table 39, Table 40, Table 4, Table 56, and Table 59. | | | Table 30, Table 35 Added Table 33 Added "Fast Passive Parallel Configuration Timing" Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 7 Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | Added "Fast Passive Parallel Configuration Timing" Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | able 27, | | December 2012 Added "Active Serial Configuration Timing" Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | December 2012 2.5 Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | Added "Passive Serial Configuration Timing" Added "Remote System Upgrades" Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table
59. | | | Added "User Watchdog Internal Circuitry Timing Specification" Added "Initialization" Added "Raw Binary File Size" Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | ■ Added "Initialization" ■ Added "Raw Binary File Size" ■ Added Figure 1, Figure 2, and Figure 3. ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | ■ Added "Raw Binary File Size" ■ Added Figure 1, Figure 2, and Figure 3. ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | June 2012 Added Figure 1, Figure 2, and Figure 3. Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 36, Table 36, Table 37, Table 38, Table 39, Table 40, Table 40, Table 56, and Table 59. | | | June 2012 Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | Table 30, Table 31, Table 35, Table 38, Table 39, Table 40, Table 4 Table 56, and Table 59. | | | | | | | | | ■ Changed title of document to <i>Stratix V Device Datasheet</i> . | | | ■ Removed document from the Stratix V handbook and made it a separate document | cument. | | February 2012 2.3 Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | | December 2011 2.2 ■ Added Table 2–31. | | | ■ Updated Table 2–28 and Table 2–34. | | | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information at Stratix V GT devices. | out | | November 2011 2.1 Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | ■ Various edits throughout to fix SPRs. | | | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2 Table 2–24. | 2–23, and | | May 2011 2.0 ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications | s" title. | | ■ Chapter moved to Volume 1. | | | ■ Minor text edits. | | | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | | December 2010 1.1 Converted chapter to the new template. | | | ■ Minor text edits. | | | July 2010 1.0 Initial release. | |