Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 317000 | | Number of Logic Elements/Cells | 840000 | | Total RAM Bits | 53248000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-HBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma9k3h40i3ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true ⁽¹⁾ : | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | #### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ## **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ## **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 10 Electrical Characteristics Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2) | | | | | Calibratio | n Accuracy | | | |--|--|--|------------|------------|----------------|------------|------| | Symbol | Description | Conditions | C1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | 50-Ω R _S | Internal series termination with calibration (50- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | $34\text{-}\Omega$ and $40\text{-}\Omega$ R_S | Internal series termination with calibration (34- Ω and 40- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S | Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting) | V _{CCIO} = 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 50-Ω R _T | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 2.5, 1.8,
1.5, 1.2 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$ | Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | 60- Ω and 120- Ω R _T | Internal parallel termination with calibration (60- Ω and 120- Ω setting) | V _{CCIO} = 1.2 | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$ | Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | ### Note to Table 11: Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes. Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2) | | | | Resistance Tolerance | | | | | | |-----------------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------|--| | Symbol | Description | Conditions | C 1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | | 25-Ω R, 50-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 3.0 and 2.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | ⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only. Electrical Characteristics Page 11 | Symbol | | | Resistance Tolerance | | | | | | |----------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------|--| | | Description | Conditions | C1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | | 100-Ω R _D | Internal differential termination (100-Ω setting) | V _{CCPD} = 2.5 V | ±25 | ±25 | ±25 | ±25 | % | | Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change. OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration. Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6) $$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$ ## Notes to Equation 1: - (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} . - (2) R_{SCAL} is the OCT resistance value at power-up. - (3) ΔT is the variation of temperature with respect to the temperature at power-up. - (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up. - (5) dR/dT is the percentage change of R_{SCAL} with temperature. - (6) dR/dV is the percentage change of R_{SCAL} with voltage. Table 13 lists the on-chip termination variation after power-up calibration. Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.0297 | | | | OCT variation with voltage without recalibration | 2.5 | 0.0344 | | | dR/dV | | 1.8 | 0.0499 | %/mV | | | Todanstation | 1.5 | 0.0744 | | | | | 1.2 | 0.1241 | | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|--|--|------------------|--------------------|------|------------------|--------------------|-----------------------|------------------|--------------|-------------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Spread-spectrum
downspread | PCle | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | % | | On-chip
termination
resistors (21) | _ | _ | 100 | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} ⁽⁵⁾ | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | | _ | -0.4 | _ | | -0.4 | _ | 1 | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC | Dedicated
reference
clock pin | 1050/1000/900/850 ⁽²⁾ 1050/1000/900/850 ⁽²⁾ 1050/1000/900/850 ⁽²⁾ | | | | | | 00/850 ⁽²⁾ | mV | | | | coupled) ⁽³⁾ | RX reference clock pin | 1. | .0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | 1. | V | | | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | 250 | _ | 550 | mV | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | _ | _ | -70 | dBc/Hz | | Transmitter | 1 kHz | _ | _ | -90 | _ | _ | -90 | _ | _ | -90 | dBc/Hz | | REFCLK Phase
Noise | 10 kHz | | _ | -100 | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | (622 MHz) ⁽²⁰⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | _ | _ | -110 | dBc/Hz | | | ≥1 MHz | _ | _ | -120 | _ | _ | -120 | _ | _ | -120 | dBc/Hz | | Transmitter
REFCLK Phase
Jitter
(100 MHz) (17) | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | _ | _ | 3 | ps
(rms) | | R _{REF} (19) | _ | _ | 1800
±1% | _ | _ | 1800
±1% | _ | _ | 180
0
±1% | _ | Ω | | Transceiver Clock | <u> </u> | | | _ | | | _ | | | _ | | | fixedclk clock frequency | PCIe
Receiver
Detect | _ | 100
or
125 | _ | _ | 100
or
125 | _ | _ | 100
or
125 | _ | MHz | Page 20 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 3 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | sceive
Grade | r Speed
2 | Trar | sceive
Grade | er Speed
e 3 | Unit | |--|---|------|------------------|--------------|----------|-----------------|--------------|---------|-----------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reconfiguration
clock
(mgmt_clk_clk)
frequency | _ | 100 | _ | 125 | 100 | _ | 125 | 100 | _ | 125 | MHz | | Receiver | | | | | | | | | | | | | Supported I/O
Standards | _ | | | 1.4-V PCMI | _, 1.5-V | PCML, | 2.5-V PCM | L, LVPE | CL, and | d LVDS | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) (9), (23) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Absolute V _{MAX} for a receiver pin ⁽⁵⁾ | _ | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | _ | -0.4 | _ | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-
to-peak
differential input
voltage V _{ID} (diff p-
p) before device
configuration (22) | _ | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | Maximum peak-
to-peak | $V_{CCR_GXB} = 1.0 \text{ V}/1.05 \text{ V} $ $(V_{ICM} = 0.70 \text{ V})$ | _ | _ | 2.0 | _ | _ | 2.0 | _ | _ | 2.0 | V | | differential input
voltage V _{ID} (diff p-
p) after device
configuration (18) | $V_{\text{CCR_GXB}} = 0.90 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | | | 2.4 | _ | | 2.4 | _ | _ | 2.4 | V | | configuration ⁽¹⁸⁾ ,
⁽²²⁾ | $V_{\text{CCR_GXB}} = 0.85 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | _ | _ | 2.4 | _ | _ | 2.4 | _ | _ | 2.4 | V | | Minimum differential eye opening at receiver serial input pins (6), (22), (27) | _ | 85 | _ | _ | 85 | _ | _ | 85 | _ | _ | mV | Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | 5 | Transceive
Speed Grade | | | Transceive
peed Grade | | Unit | | | | |--|--|-----------|--|-------------|------------------------|--------------------------|--------------|------------|--|--|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | | | Reference Clock | • | • | • | • | • | • | • | | | | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | | | | Standards | RX reference clock pin | | 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS | | | | | | | | | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | | | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | | | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | | | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | ps | | | | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | | | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | | | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | | | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | | | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | | | | RX reference
clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | | | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | | | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | | 1050/1000 | 2) | | 1050/1000 | 2) | mV | | | | | | RX reference
clock pin | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | | | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | | | | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$ | Symbol/ | Conditions | S | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|---|--|--------------------------|----------|--------|--------------------------|--------|----------| | Description | | Min | Тур | Max | Min | Тур | Max | 1 | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | | | Transmitter REFCLK | 1 kHz | _ | _ | -90 | | _ | -90 | | | Phase Noise (622 | 10 kHz | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | MHz) ⁽¹⁸⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | | | | ≥1 MHz | | _ | -120 | _ | | -120 | 1 | | Transmitter REFCLK
Phase Jitter (100
MHz) ⁽¹⁵⁾ | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | ps (rms) | | RREF (17) | _ | _ | 1800
± 1% | _ | _ | 1800
± 1% | _ | Ω | | Transceiver Clocks | | | | | | | | | | fixedclk clock
frequency | PCIe
Receiver
Detect | _ | 100 or
125 | _ | _ | 100 or
125 | _ | MHz | | Reconfiguration clock
(mgmt_clk_clk)
frequency | | 100 | _ | 125 | 100 | | 125 | MHz | | Receiver | | | | | | | | | | Supported I/O
Standards | _ | 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS | | | | | | | | Data rate
(Standard PCS) (21) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) (21) | GX channels | 600 | _ | 12,500 | 600 | _ | 12,500 | Mbps | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Absolute V _{MAX} for a receiver pin ⁽³⁾ | GT channels | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | GT channels | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-to-peak | GT channels | | _ | 1.6 | _ | | 1.6 | V | | differential input
voltage V _{ID} (diff p-p)
before device
configuration ⁽²⁰⁾ | GX channels | | | | (8) | | | | | | GT channels | | | | | | | | | Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20) | $V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$ | _ | _ | 2.2 | _ | _ | 2.2 | V | | oomiguration ', ' / | GX channels | | | <u> </u> | (8) | | • | • | | Minimum differential | GT channels | 200 | _ | _ | 200 | | _ | mV | | eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾ | GX channels | | | | (8) | | | | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | | | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------|--|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | | | V _{OCM} (AC coupled) | GX channels | (8) | | | | | | | | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | | | Intra-differential pair
skew | GX channels | | | | (8) | | | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | (8) | | | | | | | | | | CMU PLL | | | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | | ATX PLL | | | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | | fPLL | | | • | | | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | Page 34 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (1) | Symbol/
Description | Conditions | | Transceivei
peed Grade | | Transceiver
Speed Grade 3 | | Unit | | |----------------------------|------------|-----|---------------------------|-----|------------------------------|-----|------|----| | Description | | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 28: - (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level. - (3) The device cannot tolerate prolonged operation at this absolute maximum. - (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (6) Refer to Figure 6 for the GT channel DC gain curves. - (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications. - (9) t_{LTB} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (10) tLTD is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high. - (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (13) tpll powerdown is the PLL powerdown minimum pulse width. - (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (17) For ES devices, RREF is 2000 Ω ±1%. - (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (20) Refer to Figure 4. - (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (22) This supply follows VCCR_GXB for both GX and GT channels. - (23) When you use fPLL as a TXPLL of the transceiver. Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | ### Note: (1) Refer to Figure 4. Figure 6 shows the Stratix V DC gain curves for GT channels. # Figure 6. DC Gain Curves for GT Channels # **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI Page 38 Switching Characteristics - XFI - ASI - HiGig/HiGig+ - HiGig2/HiGig2+ - Serial Data Converter (SDC) - GPON - SDI - SONET - Fibre Channel (FC) - PCIe - QPI - SFF-8431 Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols. # **Core Performance Specifications** This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications. # **Clock Tree Specifications** Table 30 lists the clock tree specifications for Stratix V devices. Table 30. Clock Tree Performance for Stratix V Devices (1) | | Performance | | | | | | | |------------------------------|--------------------------|--------------------------|--------|------|--|--|--| | Symbol | C1, C2, C2L, I2, and I2L | C3, I3, I3L, and
I3YY | C4, I4 | Unit | | | | | Global and
Regional Clock | 717 | 650 | 580 | MHz | | | | | Periphery Clock | 550 | 500 | 500 | MHz | | | | #### Note to Table 30: (1) The Stratix V ES devices are limited to 600 MHz core clock tree performance. Page 46 Switching Characteristics Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4) | | | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | | C4,I4 | 4 | | |---------------------------------------|---|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|------| | Symbol | Conditions | Min | Тур | Max | Unit | | t _{DUTY} | Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | | True Differential
I/O Standards | _ | _ | 160 | _ | _ | 160 | _ | _ | 200 | _ | _ | 200 | ps | | t _{RISE} & t _{FALL} | Emulated Differential I/O Standards with three external output resistor networks | _ | | 250 | _ | _ | 250 | _ | | 250 | _ | | 300 | ps | | | True Differential
I/O Standards | _ | _ | 150 | _ | | 150 | | _ | 150 | | _ | 150 | ps | | TCCS | Emulated
Differential I/O
Standards | _ | _ | 300 | _ | _ | 300 | _ | | 300 | _ | | 300 | ps | | Receiver | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (11), (12),
(13), (14), (15), (16) | 150 | _ | 1434 | 150 | _ | 1434 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16) | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1250 | Mbps | | - f _{HSDRDPA}
(data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | _ | (7) | Mbps | Page 50 Switching Characteristics Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2) | Speed Grade | Min | Max | Unit | |-------------|-----|-----|------| | C4,I4 | 8 | 16 | ps | #### Notes to Table 40: - (1) The typical value equals the average of the minimum and maximum values. - (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps. Table 41 lists the DQS phase shift error for Stratix V devices. Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1) | Number of DQS Delay
Buffers | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |--------------------------------|-----|------------------|-------------------|-------|------| | 1 | 28 | 28 | 30 | 32 | ps | | 2 | 56 | 56 | 60 | 64 | ps | | 3 | 84 | 84 | 90 | 96 | ps | | 4 | 112 | 112 | 120 | 128 | ps | #### Notes to Table 41: Table 42 lists the memory output clock jitter specifications for Stratix V devices. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3) | Clock | Clock
Network Parameter | | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |----------|------------------------------|------------------------|-----------------|-----|------------------|-----|----------------------|------|-------|------|------| | NEIWUIK | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -50 | 50 | -50 | 50 | -55 | 55 | -55 | 55 | ps | | Regional | Cycle-to-cycle period jitter | t _{JIT(cc)} | -100 | 100 | -100 | 100 | -110 | 110 | -110 | 110 | ps | | | Duty cycle jitter | $t_{JIT(duty)}$ | -50 | 50 | -50 | 50 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | | Clock period jitter | t _{JIT(per)} | -75 | 75 | -75 | 75 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | Global | Cycle-to-cycle period jitter | t _{JIT(cc)} | -150 | 150 | -150 | 150 | -165 | 165 | -165 | 165 | ps | | | Duty cycle jitter | t _{JIT(duty)} | - 75 | 75 | -75 | 75 | -90 | 90 | -90 | 90 | ps | ⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3) | Clock Parameter | | Symbol | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |-----------------|------------------------------|------------------------|-------|------|------------------|------|----------------------|-----|-------|-----|------| | NELWURK | Network | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -25 | 25 | -25 | 25 | -30 | 30 | -35 | 35 | ps | | PHY
Clock | Cycle-to-cycle period jitter | t _{JIT(cc)} | -50 | 50 | -50 | 50 | -60 | 60 | -70 | 70 | ps | | | Duty cycle jitter | t _{JIT(duty)} | -37.5 | 37.5 | -37.5 | 37.5 | -45 | 45 | -56 | 56 | ps | #### Notes to Table 42: - (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible. - (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL. - (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma. # **OCT Calibration Block Specifications** Table 43 lists the OCT calibration block specifications for Stratix V devices. Table 43. OCT Calibration Block Specifications for Stratix V Devices | Symbol | Description | Min | Тур | Max | Unit | |-----------------------|--|-----|------|-----|--------| | OCTUSRCLK | Clock required by the OCT calibration blocks | | _ | 20 | MHz | | T _{OCTCAL} | Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration | _ | 1000 | _ | Cycles | | T _{OCTSHIFT} | Number of OCTUSRCLK clock cycles required for the OCT code to shift out | _ | 32 | _ | Cycles | | T _{RS_RT} | Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10) | _ | 2.5 | _ | ns | Figure 10 shows the timing diagram for the oe and dyn term ctrl signals. Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals Page 54 Configuration Specification Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) ^{(4), (5)} | | |-----------------|--------|---------|--------------------------------|--|--| | Stratix V E (1) | 5SEE9 | _ | 342,742,976 | 700,888 | | | Stratix V L 17 | 5SEEB | _ | 342,742,976 | 700,888 | | #### Notes to Table 47: - (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme. - (2) 36-transceiver devices. - (3) 24-transceiver devices. - (4) File size for the periphery image. - (5) The IOCSR .rbf size is specifically for the CvP feature. Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design. For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*. Table 48 lists the minimum configuration time estimates for Stratix V devices. Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Member | | Active Serial (1) |) | Fast Passive Parallel (2) | | | | | |---------|--------|-------|-------------------|------------------------|---------------------------|------------|------------------------|--|--| | Variant | Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | | A3 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | | A4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | | A5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | | A7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | GX | A9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | AB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | B5 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | | B6 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | | В9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | BB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | GT | C5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | G1 | C7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×32 | Disabled | Enabled | 4 | | 1FF ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host #### Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. # **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Glossary Page 67 Table 60. Glossary (Part 3 of 4) | Letter | Subject | Definitions | | | | |--------|---|--|--|--|--| | | SW (sampling window) | Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS | | | | | S | Single-ended
voltage
referenced I/O
standard | The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard VIHACO VIHACO VILLOCO V | | | | | | t _C | High-speed receiver and transmitter input and output clock period. | | | | | | TCCS (channel-
to-channel-skew) | The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table). | | | | | | | High-speed I/O block—Duty cycle on the high-speed transmitter output clock. | | | | | T | t _{DUTY} | Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_c/w)$ | | | | | | t _{FALL} | Signal high-to-low transition time (80-20%) Cycle-to-cycle jitter tolerance on the PLL clock input. | | | | | | t _{INCCJ} | | | | | | | t _{OUTPJ_IO} | Period jitter on the general purpose I/O driven by a PLL. | | | | | | t _{OUTPJ_DC} | Period jitter on the dedicated clock output driven by a PLL. | | | | | | t _{RISE} | Signal low-to-high transition time (20-80%) | | | | | U | _ | _ | | | | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date | Version | Changes | |---------------|---------|---| | | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | ■ Added 240-Ω to Table 11. | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | ■ Added additional max data rate for fPLL in Table 23. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | ■ Changed the mode descriptions for MLAB and M20K in Table 33. | | | 14 3.3 | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | November 2014 | | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | ■ Added note about nstatus to Table 50, Table 51, Table 54. | | | | ■ Changed the available settings in Table 58. | | | | ■ Changed the note in "Periphery Performance". | | | | ■ Updated the "I/O Standard Specifications" section. | | | | ■ Updated the "Raw Binary File Size" section. | | | | ■ Updated the receiver voltage input range in Table 22. | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | ■ Updated the DCLK note to Figure 11. | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | ■ Updated Table 6 and Table 7. | | | | ■ Added the DCLK specification to Table 55. | | | | ■ Updated the notes for Table 47. | | | | ■ Updated the list of parameters for Table 56. | | November 2013 | 3.2 | ■ Updated Table 28 | | November 2013 | 3.1 | ■ Updated Table 33 | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | | 2.8 | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | October 2013 | | ■ Added Figure 1 and Figure 3 | | | | ■ Added the "Transceiver Characterization" section | | | | ■ Removed all "Preliminary" designations. |