Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 359200 | | Number of Logic Elements/Cells | 952000 | | Total RAM Bits | 53248000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-HBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxmabk2h40i2ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 2 Electrical Characteristics Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2) | Transceiver Speed | Core Speed Grade | | | | | | | | | | | |-----------------------|------------------|---------|-----|-----|---------|---------|--------------------|-----|--|--|--| | Grade | C1 | C2, C2L | C3 | C4 | 12, 12L | 13, 13L | I3YY | 14 | | | | | 3 GX channel—8.5 Gbps | _ | Yes | Yes | Yes | _ | Yes | Yes ⁽⁴⁾ | Yes | | | | #### Notes to Table 1: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. - (3) C2L, I2L, and I3L speed grades are for low-power devices. - (4) I3YY speed grades can achieve up to 10.3125 Gbps. Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2) | Transacius Crad Crado | | Core Speed Grade | | | | | | | | | |--|-----|------------------|-----|-----|--|--|--|--|--|--| | Transceiver Speed Grade | C1 | C2 | 12 | 13 | | | | | | | | 2
GX channel—12.5 Gbps
GT channel—28.05 Gbps | Yes | Yes | _ | _ | | | | | | | | 3
GX channel—12.5 Gbps
GT channel—25.78 Gbps | Yes | Yes | Yes | Yes | | | | | | | #### Notes to Table 2: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. # **Absolute Maximum Ratings** Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions. Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device. Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2) | Symbol | Description | Minimum | Maximum | Unit | |---------------------|--|---------|---------|------| | V _{CC} | Power supply for core voltage and periphery circuitry | -0.5 | 1.35 | V | | V _{CCPT} | Power supply for programmable power technology | -0.5 | 1.8 | V | | V _{CCPGM} | Power supply for configuration pins | -0.5 | 3.9 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | -0.5 | 3.4 | V | | V _{CCBAT} | Battery back-up power supply for design security volatile key register | -0.5 | 3.9 | V | | V _{CCPD} | I/O pre-driver power supply | -0.5 | 3.9 | V | | V _{CCIO} | I/O power supply | -0.5 | 3.9 | V | Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | neceiver arialog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog newer cupply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (left side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | V | | | | | 1.03 | 1.05 | 1.07 | | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | #### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Electrical Characteristics Page 9 # I/O Pin Leakage Current Table 9 lists the Stratix V I/O pin leakage current specifications. Table 9. I/O Pin Leakage Current for Stratix V Devices (1) | Symbol | Description | Conditions | Min | Тур | Max | Unit | |-----------------|--------------------|--|-----|-----|-----|------| | I _I | Input pin | $V_I = 0 V to V_{CCIOMAX}$ | -30 | _ | 30 | μA | | I _{OZ} | Tri-stated I/O pin | $V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$ | -30 | | 30 | μΑ | ### Note to Table 9: (1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μA of leakage current per I/O is expected. # **Bus Hold Specifications** Table 10 lists the Stratix V device family bus hold specifications. Table 10. Bus Hold Parameters for Stratix V Devices | | | | V _{CCIO} | | | | | | | | | | | |-------------------------------|-------------------|--|-------------------|------|-------|------|-------|------|-------|------|-------|------|------| | Parameter | Symbol | Conditions | 1.2 V | | 1.5 V | | 1.8 V | | 2.5 V | | 3.0 V | | Unit | | | | | Min | Max | | | Low
sustaining
current | I _{SUSL} | V _{IN} > V _{IL}
(maximum) | 22.5 | _ | 25.0 | _ | 30.0 | _ | 50.0 | _ | 70.0 | _ | μА | | High
sustaining
current | I _{SUSH} | V _{IN} < V _{IH}
(minimum) | -22.5 | _ | -25.0 | _ | -30.0 | _ | -50.0 | | -70.0 | | μА | | Low
overdrive
current | I _{ODL} | 0V < V _{IN} < V _{CCIO} | _ | 120 | _ | 160 | _ | 200 | _ | 300 | _ | 500 | μА | | High
overdrive
current | I _{ODH} | 0V < V _{IN} < V _{CCIO} | _ | -120 | _ | -160 | _ | -200 | _ | -300 | _ | -500 | μА | | Bus-hold
trip point | V_{TRIP} | _ | 0.45 | 0.95 | 0.50 | 1.00 | 0.68 | 1.07 | 0.70 | 1.70 | 0.80 | 2.00 | V | # **On-Chip Termination (OCT) Specifications** If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications. Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 1 of 2) | | | | | Calibratio | n Accuracy | | | |---------------------|---|--|------------|------------|----------------|-------|------| | Symbol | Description | Conditions | C 1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | 25-Ω R _S | Internal series termination with calibration (25- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | Electrical Characteristics Page 17 You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 20 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 3 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | sceive
Grade | r Speed
2 | Trar | sceive
Grade | er Speed
e 3 | Unit | |--|---|------|------------------|--------------|------|-----------------|--------------|------|-----------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reconfiguration
clock
(mgmt_clk_clk)
frequency | _ | 100 | _ | 125 | 100 | _ | 125 | 100 | _ | 125 | MHz | | Receiver | | | | | | | | | | | | | Supported I/O Standards — 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS | | | | | | | | | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) (9), (23) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Absolute V _{MAX} for a receiver pin ⁽⁵⁾ | _ | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | _ | -0.4 | _ | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-
to-peak
differential input
voltage V _{ID} (diff p-
p) before device
configuration (22) | _ | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | Maximum peak-
to-peak | $V_{CCR_GXB} = 1.0 \text{ V}/1.05 \text{ V} $ $(V_{ICM} = 0.70 \text{ V})$ | _ | _ | 2.0 | _ | _ | 2.0 | _ | _ | 2.0 | V | | differential input
voltage V _{ID} (diff p-
p) after device
configuration (18) | $V_{\text{CCR_GXB}} = 0.90 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | | | 2.4 | _ | | 2.4 | _ | _ | 2.4 | V | | configuration ⁽¹⁸⁾ ,
⁽²²⁾ | $V_{CCR_GXB} = 0.85 \text{ V}$ $(V_{ICM} = 0.6 \text{ V})$ | _ | _ | 2.4 | _ | _ | 2.4 | _ | _ | 2.4 | V | | Minimum differential eye opening at receiver serial input pins (6), (22), (27) | _ | 85 | _ | _ | 85 | _ | _ | 85 | _ | _ | mV | Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | | | | - | 1.4-V ar | nd 1.5-V PC | ML | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Page 26 Switching Characteristics Table 25 shows the approximate maximum data rate using the standard PCS. Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3) | Mada (2) | Transceiver | PMA Width | 20 | 20 | 16 | 16 | 10 | 10 | 8 | 8 | |---------------------|-------------|--|---|---------|---------|---------|-----|-----|------|------| | Mode ⁽²⁾ | Speed Grade | PCS/Core Width | Width 40 20 2L, I2, I2L ed grade 12.2 11.4 2L, I2, I2L ed grade 12.2 11.4 3, I3L ed grade 9.8 9.0 2L, I2, I2L ed grade 8.5 8.5 YY ed grade 10.3125 10.3125 3, I3L ed grade 8.5 8.5 , I4 ed grade 8.5 8.5 , I4 ed grade 8.5 8.2 2L, I2, I2L ed grade 12.2 11.4 2L, I2, I2L ed grade 12.2 11.4 3, I3L ed grade 9.8 9.0 2L, I2, I2L ed grade 9.8 9.0 | 32 | 16 | 20 | 10 | 16 | 8 | | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C1, C2, C2L, I2, I2L core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | FIFO | | C1, C2, C2L, I2, I2L core speed grade | 8.5 | 8.5 | 8.5 | 8.5 | 6.5 | 5.8 | 5.2 | 4.72 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.8 | 4.2 | 3.84 | 3.44 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | Register | | C1, C2, C2L, I2, I2L
core speed grade | 10.3125 | 10.3125 | 10.3125 | 10.3125 | 6.1 | 5.7 | 4.88 | 4.56 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.4 | 4.1 | 3.52 | 3.28 | # Notes to Table 25: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. ⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade. Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Page 34 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (1) | Symbol/
Description | Conditions | | Transceivei
peed Grade | | T
Sp | Unit | | | |----------------------------|------------|-----|---------------------------|-----|---------|------|-----|----| | Description | | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 28: - (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level. - (3) The device cannot tolerate prolonged operation at this absolute maximum. - (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (6) Refer to Figure 6 for the GT channel DC gain curves. - (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications. - (9) t_{LTB} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (10) tLTD is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high. - (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (13) tpll powerdown is the PLL powerdown minimum pulse width. - (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (17) For ES devices, RREF is 2000 Ω ±1%. - (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (20) Refer to Figure 4. - (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (22) This supply follows VCCR_GXB for both GX and GT channels. - (23) When you use fPLL as a TXPLL of the transceiver. Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | # Note: (1) Refer to Figure 4. Page 38 Switching Characteristics - XFI - ASI - HiGig/HiGig+ - HiGig2/HiGig2+ - Serial Data Converter (SDC) - GPON - SDI - SONET - Fibre Channel (FC) - PCIe - QPI - SFF-8431 Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols. # **Core Performance Specifications** This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications. # **Clock Tree Specifications** Table 30 lists the clock tree specifications for Stratix V devices. Table 30. Clock Tree Performance for Stratix V Devices (1) | | Performance | | | | | | | | |------------------------------|--------------------------|--------------------------|--------|------|--|--|--|--| | Symbol | C1, C2, C2L, I2, and I2L | C3, I3, I3L, and
I3YY | C4, I4 | Unit | | | | | | Global and
Regional Clock | 717 | 650 | 580 | MHz | | | | | | Periphery Clock | 550 | 500 | 500 | MHz | | | | | ## Note to Table 30: (1) The Stratix V ES devices are limited to 600 MHz core clock tree performance. Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3) | | Symbol | Parameter | Min | Тур | Max | Unit | |---|--------|--|--------|------|-------|------| | f | RES | Resolution of VCO frequency (f _{INPFD} = 100 MHz) | 390625 | 5.96 | 0.023 | Hz | #### Notes to Table 31: - (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard. - (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL. - (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps. - (4) f_{REF} is fIN/N when N = 1. - (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52. - (6) The cascaded PLL specification is only applicable with the following condition: - a. Upstream PLL: 0.59Mhz \le Upstream PLL BW < 1 MHz - b. Downstream PLL: Downstream PLL BW > 2 MHz - (7) High bandwidth PLL settings are not supported in external feedback mode. - (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50. - (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification. - (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz. - (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz. - (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz. # **DSP Block Specifications** Table 32 lists the Stratix V DSP block performance specifications. Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2) | | | | F | Peformano | e | | | | | | | |--|---------------------|---------|------------|-----------|------------------|-----|-----|------|--|--|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | | Modes using one DSP | | | | | | | | | | | | Three 9 x 9 | 600 | 600 | 600 | 480 | 480 | 420 | 420 | MHz | | | | | One 18 x 18 | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | | | | Two partial 18 x 18 (or 16 x 16) | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | | | | One 27 x 27 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One 36 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One sum of two 18 x 18(One sum of 2 16 x 16) | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One sum of square | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One 18 x 18 plus 36 (a x b) + c | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | | | Modes u | sing two I |)SPs | | | | • | | | | | Three 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One sum of four 18 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | | | | One sum of two 27 x 27 | 465 | 465 | 450 | 380 | 380 | 300 | 290 | MHz | | | | | One sum of two 36 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | | | | One complex 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One 36 x 36 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | | | Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2) | | | Resour | ces Used | | | Pe | erforman | ce | | | | |---------------|---|--------|----------|-----|------------|-----|----------|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, 12L | 13,
13L,
13YY | 14 | Unit | | | Single-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port with
the read-during-write
option set to Old Data ,
all supported widths | 0 | 1 | 525 | 525 | 455 | 400 | 525 | 455 | 400 | MHz | | M20K
Block | Simple dual-port with ECC enabled, 512 × 32 | 0 | 1 | 450 | 450 | 400 | 350 | 450 | 400 | 350 | MHz | | | Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32 | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | | | True dual port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | ROM, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | ### Notes to Table 33: # **Temperature Sensing Diode Specifications** Table 34 lists the internal TSD specification. **Table 34. Internal Temperature Sensing Diode Specification** | Tei | mperature
Range | Accuracy | Offset
Calibrated
Option | Sampling Rate | Conversion
Time | Resolution | Minimum
Resolution
with no
Missing Codes | |------|--------------------|----------|--------------------------------|----------------|--------------------|------------|---| | -40° | °C to 100°C | ±8°C | No | 1 MHz, 500 KHz | < 100 ms | 8 bits | 8 bits | Table 35 lists the specifications for the Stratix V external temperature sensing diode. Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices | Description | Min | Тур | Max | Unit | |--|-------|-------|-------|------| | I _{bias} , diode source current | 8 | _ | 200 | μΑ | | V _{bias,} voltage across diode | 0.3 | _ | 0.9 | V | | Series resistance | _ | _ | <1 | Ω | | Diode ideality factor | 1.006 | 1.008 | 1.010 | _ | ⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes. ⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}. ⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled. Page 46 Switching Characteristics Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4) | | | C1 | | C2, | C2, C2L, I2, I2L | | C3, I3, I3L, I3YY | | C4,14 | | | Unit | | | |---------------------------------------|---|-----|-----|------|------------------|-----|-------------------|-----|-------|------|-----|------|------|------| | Symbol | Conditions | Min | Тур | Max | Unit | | t _{DUTY} | Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | | True Differential
I/O Standards | _ | _ | 160 | _ | _ | 160 | _ | _ | 200 | _ | _ | 200 | ps | | t _{RISE} & t _{FALL} | Emulated Differential I/O Standards with three external output resistor networks | _ | | 250 | _ | _ | 250 | _ | | 250 | _ | | 300 | ps | | | True Differential
I/O Standards | _ | _ | 150 | _ | | 150 | | _ | 150 | | _ | 150 | ps | | TCCS | Emulated
Differential I/O
Standards | _ | _ | 300 | _ | _ | 300 | _ | | 300 | _ | | 300 | ps | | Receiver | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (11), (12),
(13), (14), (15), (16) | 150 | _ | 1434 | 150 | _ | 1434 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16) | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1250 | Mbps | | - f _{HSDRDPA}
(data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | _ | (7) | Mbps | Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | Sinusoidal Jitter (UI) | | |----------|------------------------|--------| | F1 | 10,000 | 25.000 | | F2 | 17,565 | 25.000 | | F3 | 1,493,000 | 0.350 | | F4 | 50,000,000 | 0.350 | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps # DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices. Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | ### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Page 54 Configuration Specification Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Device Package Configuration .rbf Size (bits | | IOCSR .rbf Size (bits) (4), (5) | |-----------------|--------|--|-------------|---------------------------------| | Stratix V E (1) | 5SEE9 | _ | 342,742,976 | 700,888 | | Stratix V L 17 | 5SEEB | _ | 342,742,976 | 700,888 | #### Notes to Table 47: - (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme. - (2) 36-transceiver devices. - (3) 24-transceiver devices. - (4) File size for the periphery image. - (5) The IOCSR .rbf size is specifically for the CvP feature. Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design. For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*. Table 48 lists the minimum configuration time estimates for Stratix V devices. Table 48. Minimum Configuration Time Estimation for Stratix V Devices | Variant | Member
Code | Active Serial ⁽¹⁾ | | | Fast Passive Parallel ⁽²⁾ | | | |---------|----------------|------------------------------|------------|------------------------|--------------------------------------|------------|------------------------| | | | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | A3 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | A4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | A5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | A7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | GX | A9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | AB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | B5 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | B6 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | В9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | BB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | GT | C5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | u I | C7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×32 | Disabled | Enabled | 4 | | 1FF ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host ## Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Configuration Specification Page 57 # FPP Configuration Timing when DCLK-to-DATA [] = 1 Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1. Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2) ### Notes to Figure 12: - (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1. - (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. - (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings. - (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (8) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low. Configuration Specification Page 63 Table 54 lists the PS configuration timing parameters for Stratix V devices. Table 54. PS Timing Parameters for Stratix V Devices | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nCONFIG low to nSTATUS low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽¹⁾ | μS | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nCONFIG high to first rising edge on DCLK | 1,506 | | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f _{MAX} | DCLK frequency | _ | 125 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 × CLKUSR period) $^{(4)}$ | _ | _ | ## Notes to Table 54: - (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low. - (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section. - (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. # Initialization Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency. Table 55. Initialization Clock Source Option and the Maximum Frequency | Initialization Clock
Source | Configuration Schemes | Maximum
Frequency | Minimum Number of Clock
Cycles ⁽¹⁾ | | |--------------------------------|-----------------------|----------------------|--|--| | Internal Oscillator | AS, PS, FPP | 12.5 MHz | | | | CLKUSR | AS, PS, FPP (2) | 125 MHz | 8576 | | | DCLK | PS, FPP | 125 MHz | | | ### Notes to Table 55: - $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$ - (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box. Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | Date | Version | Changes | | | |----------------|---------|---|--|--| | | | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60 | | | | May 2013 | 2.7 | ■ Added Table 24, Table 48 | | | | | | ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 | | | | February 2013 | 2.6 | ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46 | | | | | | ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" | | | | | | ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35 | | | | | | ■ Added Table 33 | | | | | | ■ Added "Fast Passive Parallel Configuration Timing" | | | | D | 0.5 | ■ Added "Active Serial Configuration Timing" | | | | December 2012 | 2.5 | ■ Added "Passive Serial Configuration Timing" | | | | | | ■ Added "Remote System Upgrades" | | | | | | ■ Added "User Watchdog Internal Circuitry Timing Specification" | | | | | | ■ Added "Initialization" | | | | | | ■ Added "Raw Binary File Size" | | | | | 2.4 | ■ Added Figure 1, Figure 2, and Figure 3. | | | | June 2012 | | ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59. | | | | | | Various edits throughout to fix bugs. | | | | | | ■ Changed title of document to Stratix V Device Datasheet. | | | | | | ■ Removed document from the Stratix V handbook and made it a separate document. | | | | February 2012 | 2.3 | ■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | | | December 2011 | 2.2 | ■ Added Table 2–31. | | | | December 2011 | | ■ Updated Table 2–28 and Table 2–34. | | | | Navarahar 0044 | 2.1 | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices. | | | | November 2011 | | ■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | | | | ■ Various edits throughout to fix SPRs. | | | | | 2.0 | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24. | | | | May 2011 | | ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title. | | | | | | ■ Chapter moved to Volume 1. | | | | | | ■ Minor text edits. | | | | | | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | | | December 2010 | 1.1 | Converted chapter to the new template. | | | | | | ■ Minor text edits. | | | | July 2010 | 1.0 | Initial release. | | |