

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	41984000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1760-BBGA, FCBGA
Supplier Device Package	1760-FCBGA (42.5x42.5)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxmb5r1f43i2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Page 2 Electrical Characteristics

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2)

Transceiver Speed		Core Speed Grade										
Grade	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I3YY	14				
3 GX channel—8.5 Gbps	_	Yes	Yes	Yes	_	Yes	Yes ⁽⁴⁾	Yes				

Notes to Table 1:

- (1) C = Commercial temperature grade; I = Industrial temperature grade.
- (2) Lower number refers to faster speed grade.
- (3) C2L, I2L, and I3L speed grades are for low-power devices.
- (4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices.

Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2)

Transacius Snood Crada	Core Speed Grade								
Transceiver Speed Grade	C1	C2	12	13					
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_					
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes					

Notes to Table 2:

- (1) C = Commercial temperature grade; I = Industrial temperature grade.
- (2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

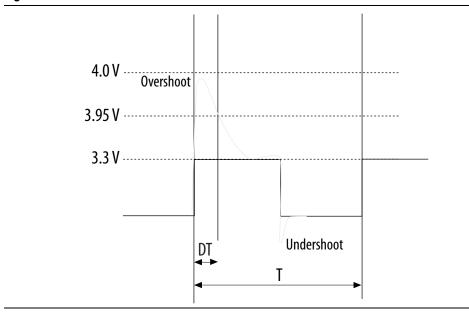

Page 4 Electrical Characteristics

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

Table 5. Maximum Allowed Overshoot During Transitions

Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Figure 1. Stratix V Device Overshoot Duration

Page 12 Electrical Characteristics

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1)

Symbol	Description	V _{CCIO} (V)	Typical	Unit			
		3.0	3.0 0.189				
		2.5	0.208	%/°C			
dR/dT	OCT variation with temperature without recalibration	1.8	0.266				
	Willout recalibration	1.5	0.273	1			
		1.2	0.317				

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	pF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15. Hot Socketing Specifications for Stratix V Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Electrical Characteristics Page 13

Internal Weak Pull-Up Resistor

Table 16 lists the weak pull-up resistor values for Stratix V devices.

Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2)

Symbol	Description	V _{CC10} Conditions (V) ⁽³⁾	Value ⁽⁴⁾	Unit
		3.0 ±5%	25	kΩ
		2.5 ±5%	25	kΩ
	Value of the I/O pin pull-up resistor before	1.8 ±5%	25	kΩ
R _{PU}	and during configuration, as well as user mode if you enable the programmable	1.5 ±5%	25	kΩ
	pull-up resistor option.	1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

Notes to Table 16:

- (1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins.
- (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .
- (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- (4) These specifications are valid with a ±10% tolerance to cover changes over PVT.

I/O Standard Specifications

Table 17 through Table 22 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486.

Table 17. Single-Ended I/O Standards for Stratix V Devices

I/O		V _{CCIO} (V)		VII	_(V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mA)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2

Page 16 Electrical Characteristics

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

I/O	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{CM(DC)} (V	V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3	_	0.5* V _{CCIO}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCIO} - 0.12	0.5* V _{CCIO}	0.5*V _{CCIO} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{CIO} (V)	(10)		V _{ID} (mV) ⁽⁸⁾			$V_{ICM(DC)}$ (V)		V _o	_D (V) (6)	V	V _{OCM} (V) ⁽⁶⁾		
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
PCML	Trar	Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 23 on page 18.														
2.5 V LVDS ⁽¹⁾	2.375	2.5	2.625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375	
	2.373	5 2.5 2.025	100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375		
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	_	_	_	_	
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4	
Mini- LVDS (HIO) (3)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4	
LVPECL (4	_	_	_	300	_	_	0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_	_	_	_		
), (9)	_	_	_	300	_	_	1	D _{MAX} > 700 Mbps	1.6	_	_	_	_	_	_	

Notes to Table 22:

- (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.
- (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.
- (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.
- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Switching Characteristics Page 19

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors (21)	_	_	100	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin		_	1.2	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	_	-0.4		_	-0.4		_	-0.4	_	_	V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200	_	1600	mV
V _{ICM} (AC	Dedicated reference clock pin	1050/	1000/90	00/850 ⁽²⁾	1050/	1000/90	900/850 (2) 1050/1000/900/850 (2)		1050/1000/900/85		mV
coupled) ⁽³⁾	RX reference clock pin	1.	.0/0.9/0	.85 ⁽⁴⁾	1.	0/0.9/0	.85 ⁽⁴⁾	1.0/0.9/0.85 (4)			V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
	100 Hz	_	_	-70	_	_	-70	_	_	-70	dBc/Hz
Transmitter	1 kHz	_	_	-90	_	_	-90	_	_	-90	dBc/Hz
REFCLK Phase Noise	10 kHz		_	-100	_	_	-100	_	_	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
	≥1 MHz	_	_	-120		_	-120		_	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) (17)	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clock	<u> </u>			_			_				
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	_	100 or 125	_	MHz

Page 24 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7)

Symbol/ Description	Conditions	Trai	nsceive Grade	r Speed 1	Transceiver Speed Grade 2 Min Typ Max				Transceiver Speed Grade 3		
Description		Min	Тур	Max			Min	Тур	Max		
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs

Notes to Table 23:

- (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
- (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.
- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{REF} is 2000 Ω ±1%.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Switching Characteristics Page 25

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL (2))		fPLL	
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	_	6	12.5	_	6	3.125	_	3
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide	_	_	_
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
xN (Native PHY IP)	8.0	8.0	Up to 13 channels above and below PLL	7.99	7.99	Up to 13 channels above	3.125	3.125	Up to 13 channels above
XIV (IVALIVE PRY IP)	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99	and below PLL	J. 125	3.123	and below PLL

Notes to Table 24:

⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽³⁾ Channel span is within a transceiver bank.

⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Page 30 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$

Symbol/	Conditions	S	Transceive Speed Grade			Transceive peed Grade		Unit		
Description		Min	Тур	Max	Min	Тур	Max	5		
Reference Clock	l		<u>I</u>	U.			<u>I</u>	<u>I</u>		
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LV and HCSL								
otandardo	RX reference clock pin		1.4-V PCML	., 1.5-V PCN	IL, 2.5-V PC	ML, LVPEC	L, and LVDS	3		
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz		
Input Reference Clock Frequency (ATX PLL) (6)	_	100	_	710	100	_	710	MHz		
Rise time	20% to 80%	_	_	400	_	_	400			
Fall time	80% to 20%	_	_	400	_	<u> </u>	400	ps		
Duty cycle	_	45	_	55	45	_	55	%		
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz		
Spread-spectrum downspread	PCle		0 to -0.5	_	_	0 to -0.5	_	%		
On-chip termination resistors (19)	_	_	100	_	_	100	_	Ω		
Absolute V _{MAX} (3)	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V		
	RX reference clock pin	_	_	1.2	_	_	1.2			
Absolute V _{MIN}	_	-0.4	_	_	-0.4		_	V		
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV		
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000	2)	1	050/1000	2)	mV		
	RX reference clock pin	1 11/11 4/11 85 (22)					(22)	V		
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV		

Page 32 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$

Symbol/	Conditions		Transceiver Speed Grade			Transceive peed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors (7)	GT channels	_	100	_	_	100	_	Ω
	85-Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination resistors	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels (19)	120-Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels	_	650	_	_	650	_	mV
	VCCR_GXB = 0.85 V or 0.9 V	_	600	_	_	600	_	mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700	_	_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth	_	750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	_	_	_	10	_	_	10	μs
t _{LTD} ⁽¹⁰⁾	_	4	_	_	4	_	_	μs
t _{LTD_manual} (11)		4	_	_	4	_	_	μs
t _{LTR_LTD_manual} (12)		15	_	_	15	_	_	μs
Run Length	GT channels	_	_	72	_	_	72	CID
nuii Leiigiii	GX channels				(8)			
CDR PPM	GT channels	_	_	1000	_	_	1000	± PPM
ODITITIVI	GX channels				(8)			
Programmable	GT channels	_	_	14	_	_	14	dB
equalization (AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_	_	7.5	_	_	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
Transmitter	· '		•			•	•	
Supported I/O Standards	_			1.4-V	and 1.5-V F	PCML		
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS)	GX channels	600	_	12,500	600		12,500	Mbps

Page 36 Switching Characteristics

Figure 4 shows the differential transmitter output waveform.

Figure 4. Differential Transmitter/Receiver Output/Input Waveform

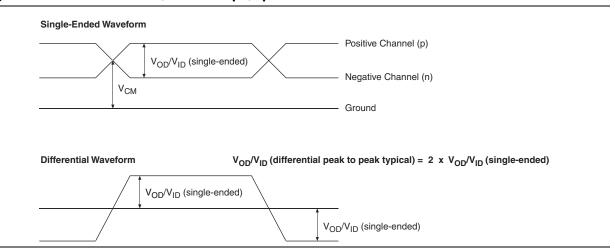


Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

Page 40 Switching Characteristics

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
→ (3) (4)	Input clock cycle-to-cycle jitter (f _{REF} ≥ 100 MHz)	_	_	0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750		+750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175 ⁽¹⁾	ps (p-p)
t _{OUTPJ_DC} (5)	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_	_	17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTPJ_DC} (5)	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+ (5)	Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} \ge 100 \text{ MHz})$	_	_	175	ps (p-p)
t _{outccj_dc} (5)	Cycle-to-Cycle Jitter for a dedicated clock output (f _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ (5)	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{OUTPJ_IO} (5),	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
(8)	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{FOUTPJ 10} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz)	_	_	60 (10)	mUI (p-p)
t _{outccj_10} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100$ MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 (10)	mUI (p-p)
t _{FOUTCCJ_IO}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100$ MHz)	_	_	600 (10)	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC_OUTPJ_DC}	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	_

Switching Characteristics Page 43

Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2)

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Notes to Table 33:

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Tei	mperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°	°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	_	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance	_	_	<1	Ω
Diode ideality factor	1.006	1.008	1.010	_

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

Page 46 Switching Characteristics

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

			C1		C2,	C2L, I	2, I2L	C3,	13, I3L	., I3YY		C4,I4	4	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks	_		250	_	_	250	_		250	_		300	ps
	True Differential I/O Standards	_	_	150	_		150		_	150		_	150	ps
TCCS	Emulated Differential I/O Standards	_	_	300	_	_	300	_		300	_		300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150	_	1434	150	_	1434	150	_	1250	150	_	1050	Mbps
True Differential I/O Standards	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150	_	1600	150	_	1600	150	_	1600	150	_	1250	Mbps
- f _{HSDRDPA} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)	_	(7)	Mbps

Page 48 Switching Characteristics

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled

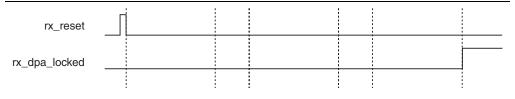


Table 37 lists the DPA lock time specifications for Stratix V devices.

Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3)

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
Farallel hapiu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
IVIISCEIIAIIEOUS	01010101	8	32	640 data transitions

Notes to Table 37:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in this table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps.

Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification

Page 50 Switching Characteristics

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2)

Speed Grade	Min	Max	Unit
C4,I4	8	16	ps

Notes to Table 40:

- (1) The typical value equals the average of the minimum and maximum values.
- (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1)

Number of DQS Delay Buffers	C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
1	28	28	30	32	ps
2	56	56	60	64	ps
3	84	84	90	96	ps
4	112	112	120	128	ps

Notes to Table 41:

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3)

Clock	Parameter	Symbol	C 1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,I4		Unit
Network			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	t _{JIT(per)}	-50	50	-50	50	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	t _{JIT(cc)}	-100	100	-100	100	-110	110	-110	110	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-50	50	-50	50	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-75	75	-75	75	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-150	150	-150	150	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	- 75	75	- 75	75	-90	90	-90	90	ps

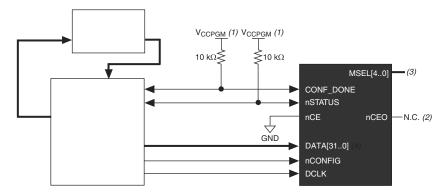
⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps.

Page 56 Configuration Specification

Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2)

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio	
	Disabled	Disabled	1	
FPP ×32	Disabled	Enabled	4	
	Enabled	Disabled	8	
	Enabled	Enabled	8	

Note to Table 49:

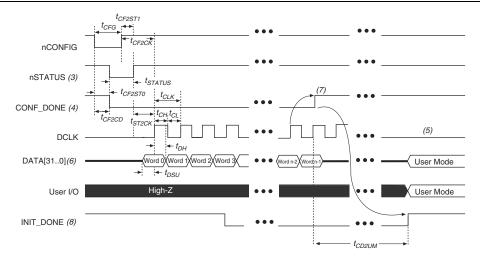

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:


- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}.
- (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0].

Configuration Specification Page 57

FPP Configuration Timing when DCLK-to-DATA [] = 1

Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.

Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2)

Notes to Figure 12:

- (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay.
- (4) After power-up, before and during configuration, CONF DONE is low.
- (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (8) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low.

Page 58 Configuration Specification

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μS
t _{STATUS}	nstatus low pulse width	268	1,506 ⁽²⁾	μ\$
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 ⁽³⁾	μ\$
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506	_	μ\$
t _{ST2CK} (6)	nSTATUS high to first rising edge of DCLK	2	_	μ\$
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f	DCLK frequency (FPP ×8/×16)	_	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	_	100	MHz
t _{CD2UM}	CONF_DONE high to user mode (4)	175	437	μS
t _{CD2CU}	governover high to gravere analysis	4 × maximum		
	CONF_DONE high to CLKUSR enabled	DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾	_	_

Notes to Table 50:

- (1) Use these timing parameters when the decompression and design security features are disabled.
- (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) This value is applicable if you do not delay configuration by externally holding the nstatus low.
- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Document Revision History Page 69

Document Revision History

Table 61 lists the revision history for this chapter.

Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes			
June 2018	3.9	Added the "Stratix V Device Overshoot Duration" figure.			
April 2017		■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.			
		■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table.			
		■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table.			
	3.8	■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table			
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.			
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.			
		■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table.			
June 2016	3.7	■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table			
		■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table.			
December 2015	3.6	■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.			
December 2015	3.5	■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table.			
		■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table.			
	3.4	■ Changed the data rate specification for transceiver speed grade 3 in the following tables:			
		"Transceiver Specifications for Stratix V GX and GS Devices"			
		■ "Stratix V Standard PCS Approximate Maximum Date Rate"			
		■ "Stratix V 10G PCS Approximate Maximum Data Rate"			
July 2015		■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table.			
		■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table.			
		■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table.			
		■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table.			