

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	41984000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1760-BBGA, FCBGA
Supplier Device Package	1760-FCBGA (42.5x42.5)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxmb5r3f43c2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

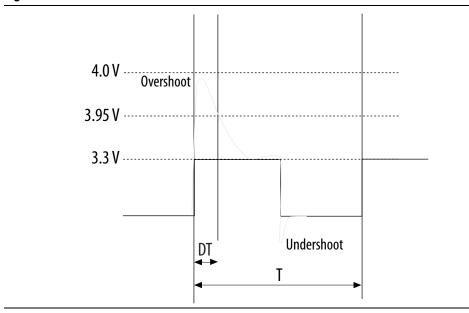

Page 4 Electrical Characteristics

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

Table 5. Maximum Allowed Overshoot During Transitions

Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05 7 4.1 4		%
				%
		4.15	2	%
		4.2	1	%

Figure 1. Stratix V Device Overshoot Duration

Electrical Characteristics Page 5

Recommended Operating Conditions

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3)	_	0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
V _{CCPD} (1)	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
V _{ccio}	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	٧
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	٧
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
V _{CCPD} (1) V _{CCPD} (1) V _{CCPGM} V _{CCA_FPLL} V _{CCD_FPLL}	I/O buffers (1.25 V) power supply		1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	0.93 0.88 1.55 2.625 3.15 2.625 3.15 2.625 1.89 1.575 1.45	V
	Configuration pins (3.0 V) power supply		— 2.375 2.5 2.625 — 2.85 3.0 3.15 — 2.375 2.5 2.625 — 2.375 2.5 2.625 — 1.71 1.8 1.89 — 1.425 1.5 1.575 — 1.283 1.35 1.45 — 1.19 1.25 1.31 — 1.14 1.2 1.26 — 2.85 3.0 3.15 — 2.375 2.5 2.625 — 1.45 1.5 1.55 — 1.45 1.5 1.55 — 1.2 — 3.0 — -0.5 — 3.6 — 0 — V _{CCIO} mmercial 0 — 85	V		
V_{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply		1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
т.	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

Page 6 Electrical Characteristics

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
t _{RAMP}	Power supply ramp time	Standard POR	200 μs	_	100 ms	_
	Fower supply rainp line	Fast POR	200 μs	_	4 ms	_

Notes to Table 6:

- (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.
- (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.
- (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left	GX, GS, GT	2.85	3.0	3.15	V
(1), (3)	side)	७४, ७७, ७१	2.375	2.5	2.625	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	GX, GS	2.85	3.0	3.15	V
$(1), (\overline{3})$	side)	রম, রহ	2.375	2.5	2.625	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V_{CCHIP_R}	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
$V_{\text{CCHSSI_R}}$	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
			0.82	0.85	0.88	
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	0.87	0.90	0.93	V
(2)	Treceiver arialog power supply (left side)	un, us, ui	0.97	1.0	1.03	V
			1.03	1.05	1.07	

Electrical Characteristics Page 11

		Resistance Tolerance					
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.8 and 1.5 V	±30	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.2 V	±35	±35	±50	±50	%
100-Ω R _D	Internal differential termination (100-Ω setting)	V _{CCPD} = 2.5 V	±25	±25	±25	±25	%

Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change.

OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration.

Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6)

$$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1:

- (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power-up.
- (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of R_{SCAL} with voltage.

Table 13 lists the on-chip termination variation after power-up calibration.

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1)

Symbol	Description	V _{CCIO} (V)	Typical	Unit
dR/dV		3.0	0.0297	
		2.5	0.0344	
	OCT variation with voltage without recalibration	1.8	0.0499	%/mV
	recambration	1.5	0.0744	
		1.2	0.1241	

Page 12 Electrical Characteristics

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1)

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.189	
	OCT variation with temperature without recalibration	2.5	0.208	
dR/dT		1.8	0.266	%/°C
		1.5	0.273	1
		1.2	0.317	

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	pF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15. Hot Socketing Specifications for Stratix V Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Page 14 Electrical Characteristics

Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices

I/O Standard	V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)		
I/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}
SSTL-12 Class I, II	1.14	1.20	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 * V _{CCIO}	0.5 * V _{CCIO}	0.53 * V _{CCIO}	_	V _{CCIO} /2	_
HSUL-12	1.14	1.2	1.3	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	_	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2)

I/O Standard	V _{IL(D(}	; ₎ (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{ol} (mA)	(mA)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} - 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCIO}	0.8 * V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCIO}	0.8 * V _{CCIO}	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-125 Class I, II	_	V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_

Page 16 Electrical Characteristics

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

I/O		V _{CCIO} (V)		V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{CM(DC)} (V)	V _{DIF(AC)} (V)	
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3	_	0.5* V _{CCIO}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCIO} - 0.12	0.5* V _{CCIO}	0.5*V _{CCIO} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{CIO} (V)	(10)		V _{ID} (mV) ⁽⁸⁾		V _{ICM(DC)} (V)			V _{OD} (V) ⁽⁶⁾			V _{OCM} (V) ⁽⁶⁾		
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Trar	nsmitte						of the high-s I/O pin speci							. For
2.5 V	2.375	2.5	2.625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375
LVDS (1)	2.373	2.3	2.023	100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	_	_	_	_
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (3)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL (4	_	_	_	300	_	_	0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_	_	_	_	
), (9)	_	_	_	300	_	_	1	D _{MAX} > 700 Mbps	1.6	_	_	_	_	_	_

Notes to Table 22:

- (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.
- (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.
- (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.
- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL (2))		fPLL	
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	_	6	12.5	_	6	3.125	_	3
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide	_	_	_
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
xN (Native PHY IP)	8.0	8.0	Up to 13 channels above and below PLL	7.99	7.99	Up to 13 channels above	3.125	3.125	Up to 13 channels above
XIV (IVALIVE PRY IP)	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99	and below PLL	J. 125	3.123	and below PLL

Notes to Table 24:

⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽³⁾ Channel span is within a transceiver bank.

⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Page 26 Switching Characteristics

Table 25 shows the approximate maximum data rate using the standard PCS.

Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3)

Made (2)	Transceiver	PMA Width	20	20	16	16	10	10	8	8
Mode ⁽²⁾	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C3, I3, I3L core speed grade	9.8	9.0	7.84	7.2	5.3	4.7	4.24	3.76
FIFO	3	C1, C2, C2L, I2, I2L core speed grade	8.5	8.5	8.5	8.5	6.5	5.8	5.2	4.72
		I3YY core speed grade		10.3125	10.3125	7.84	7.2	5.3	4.7	4.24
	3	C3, I3, I3L core speed grade	8.5	8.5	7.84	7.2	5.3	4.7	4.24	3.76
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.8	4.2	3.84	3.44
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C3, I3, I3L core speed grade	9.8	9.0	7.92	7.2	4.9	4.5	3.96	3.6
Register		C1, C2, C2L, I2, I2L core speed grade	10.3125	10.3125	10.3125	10.3125	6.1	5.7	4.88	4.56
	3	I3YY core speed grade	10.3125	10.3125	7.92	7.2	4.9	4.5	3.96	3.6
	3	C3, I3, I3L core speed grade	8.5	8.5	7.92	7.2	4.9	4.5	3.96	3.6
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Notes to Table 25:

⁽¹⁾ The maximum data rate is in Gbps.

⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$

Symbol/	Conditions	S	Transceive peed Grade			Transceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	1
	100 Hz	_	_	-70	_	_	-70	
Transmitter REFCLK	1 kHz	_	_	-90		_	-90	
Phase Noise (622	10 kHz	_	_	-100	_	_	-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz	_	_	-110	_	_	-110	
	≥1 MHz		_	-120	_		-120	1
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	ps (rms)
RREF (17)	_	_	1800 ± 1%	_	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency		100	_	125	100		125	MHz
Receiver								
Supported I/O Standards	_		1.4-V PCML	, 1.5-V PCML	_, 2.5-V PCI	ML, LVPEC	L, and LVDS	6
Data rate (Standard PCS) (21)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) (21)	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak	GT channels		_	1.6	_		1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20)	$V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$	_	_	2.2	_	_	2.2	V
oomiguration ', ' /	GX channels				(8)		•	•
Minimum differential	GT channels	200	_	_	200		_	mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)			

Page 32 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$

Symbol/	Conditions		Transceiver Speed Grade			Transceive peed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors (7)	GT channels	_	100	_	_	100	_	Ω
	85-Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination resistors	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels (19)	120-Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels	_	650	_	_	650	_	mV
	VCCR_GXB = 0.85 V or 0.9 V	_	600	_	_	600	_	mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700	_	_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth	_	750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	_	_	_	10	_	_	10	μs
t _{LTD} ⁽¹⁰⁾	_	4	_	_	4	_	_	μs
t _{LTD_manual} (11)		4	_	_	4	_	_	μs
t _{LTR_LTD_manual} (12)		15	_	_	15	_	_	μs
Run Length	GT channels	_	_	72	_	_	72	CID
nuii Leiigiii	GX channels				(8)			
CDR PPM	GT channels	_	_	1000	_	_	1000	± PPM
ODITITIVI	GX channels				(8)			
Programmable	GT channels	_	_	14	_	_	14	dB
equalization (AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_	_	7.5	_	_	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
Transmitter	· '		•			•	•	
Supported I/O Standards	_			1.4-V	and 1.5-V F	PCML		
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS)	GX channels	600	_	12,500	600		12,500	Mbps

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
INPFD	Input frequency to the PFD	5	_	325	MHz
FINPFD	Fractional Input clock frequency to the PFD	50	_	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{vco} ⁽⁹⁾	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	_	1300	MHz
EINDUTY	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	_	_	717 (2)	MHz
Гоит	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{OUT_EXT}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 (2)	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{оитриту}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
FCOMP	External feedback clock compensation time	_		10	ns
DYCONFIGCLK	Dynamic Configuration Clock used for mgmt_clk and scanclk	_	_	100	MHz
Lock	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
DLOCK	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3		MHz
: CLBW	PLL closed-loop medium bandwidth		1.5		MHz
	PLL closed-loop high bandwidth (7)	_	4	_	MHz
PLL_PSERR	Accuracy of PLL phase shift		_	±50	ps
ARESET	Minimum pulse width on the areset signal	10	_	_	ns

Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3)

	Symbol	Parameter	Min	Тур	Max	Unit
f	RES	Resolution of VCO frequency (f _{INPFD} = 100 MHz)	390625	5.96	0.023	Hz

Notes to Table 31:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps.
- (4) f_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52.
- (6) The cascaded PLL specification is only applicable with the following condition:
 - a. Upstream PLL: 0.59Mhz \le Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50.
- (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz.
- (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz.
- (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz.

DSP Block Specifications

Table 32 lists the Stratix V DSP block performance specifications.

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2)

			F	Peformano	e			
Mode	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit
		Modes ι	ısing one	DSP				
Three 9 x 9	600	600	600	480	480	420	420	MHz
One 18 x 18	600	600	600	480	480	420	400	MHz
Two partial 18 x 18 (or 16 x 16)	600	600	600	480	480	420	400	MHz
One 27 x 27	500	500	500	400	400	350	350	MHz
One 36 x 18	500	500	500	400	400	350	350	MHz
One sum of two 18 x 18(One sum of 2 16 x 16)	500	500	500	400	400	350	350	MHz
One sum of square	500	500	500	400	400	350	350	MHz
One 18 x 18 plus 36 (a x b) + c	500	500	500	400	400	350	350	MHz
		Modes u	sing two I	OSPs				•
Three 18 x 18	500	500	500	400	400	350	350	MHz
One sum of four 18 x 18	475	475	475	380	380	300	300	MHz
One sum of two 27 x 27	465	465	450	380	380	300	290	MHz
One sum of two 36 x 18	475	475	475	380	380	300	300	MHz
One complex 18 x 18	500	500	500	400	400	350	350	MHz
One 36 x 36	475	475	475	380	380	300	300	MHz

Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2)

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Notes to Table 33:

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Tei	mperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°	°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	_	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance	_	_	<1	Ω
Diode ideality factor	1.006	1.008	1.010	_

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4)

Cumbal	Conditions		C1		C2,	C2L, I	2, I2L	C3, I3, I3L, I3YY			C4,I4			Unit
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter														
	SERDES factor J = 3 to 10 (9), (11), (12), (13), (14), (15), (16)	(6)	_	1600	(6)	_	1434	(6)	_	1250	(6)	_	1050	Mbps
True Differential	SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16)	(6)	_	1600	(6)	_	1600	(6)	_	1600	(6)		1250	Mbps
I/O Standards - f _{HSDR} (data rate) SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps	
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10)	SERDES factor J = 4 to 10 (17)	(6)	_	1100	(6)	_	1100	(6)	_	840	(6)		840	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_	_	160	_	_	160	_	_	160	ps
I/O Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	300	_	_	300	_	_	300	_	_	325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_	_	0.2	_	_	0.2	_	_	0.25	UI

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Clock Network	Parameter	Symbol	C	1	C2, C2L	, I2 , I2L	C3, I3	3, I3L, YY	C4	,14	Unit
NEIWUIK			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	t _{JIT(per)}	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Notes to Table 42:

- (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.
- (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.
- (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

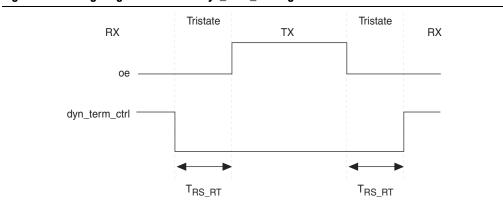

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	_	_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration		1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out		32	_	Cycles
T _{RS_RT}	Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5	_	ns

Figure 10 shows the timing diagram for the oe and dyn term ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Page 54 Configuration Specification

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (4), (5)
Stratix V E (1)	5SEE9	_	342,742,976	700,888
Stratix V L ()	5SEEB	_	342,742,976	700,888

Notes to Table 47:

- (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme.
- (2) 36-transceiver devices.
- (3) 24-transceiver devices.
- (4) File size for the periphery image.
- (5) The IOCSR .rbf size is specifically for the CvP feature.

Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design.

For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*.

Table 48 lists the minimum configuration time estimates for Stratix V devices.

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

	Member Code		Active Serial (1))	Fast Passive Parallel ⁽²⁾			
Variant		Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	A3	4	100	0.534	32	100	0.067	
	AS	4	100	0.344	32	100	0.043	
	A4	4	100	0.534	32	100	0.067	
	A5	4	100	0.675	32	100	0.084	
	A7	4	100	0.675	32	100	0.084	
GX	A9	4	100	0.857	32	100	0.107	
	AB	4	100	0.857	32	100	0.107	
	B5	4	100	0.676	32	100	0.085	
	B6	4	100	0.676	32	100	0.085	
	В9	4	100	0.857	32	100	0.107	
	BB	4	100	0.857	32	100	0.107	
GT	C5	4	100	0.675	32	100	0.084	
G1	C7	4	100	0.675	32	100	0.084	

Configuration Specification Page 59

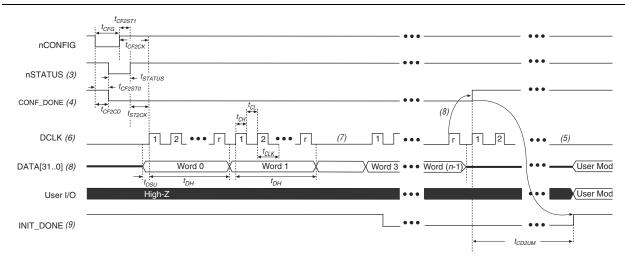


Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

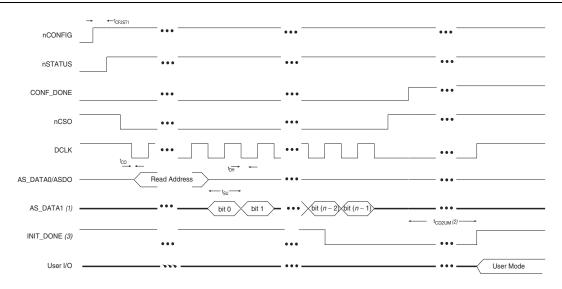
- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Configuration Specification Page 61

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2)


Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 52:

- This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.
- (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Figure 14. AS Configuration Timing

Notes to Figure 14:

- (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin.
- (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATAO/ASDO output	_	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	_	ns

Document Revision History Page 71

Table 61. Document Revision History (Part 3 of 3)

Date	Version	Changes
		■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60
May 2013	2.7	■ Added Table 24, Table 48
		■ Updated Figure 9, Figure 10, Figure 11, Figure 12
		■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35,
February 2013	2.6	Table 46
		Updated "Maximum Allowed Overshoot and Undershoot Voltage"
		■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35
		■ Added Table 33
		■ Added "Fast Passive Parallel Configuration Timing"
D	0.5	■ Added "Active Serial Configuration Timing"
December 2012	2.5	■ Added "Passive Serial Configuration Timing"
		■ Added "Remote System Upgrades"
		■ Added "User Watchdog Internal Circuitry Timing Specification"
		■ Added "Initialization"
		■ Added "Raw Binary File Size"
		■ Added Figure 1, Figure 2, and Figure 3.
June 2012	2.4	■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.
		Various edits throughout to fix bugs.
		■ Changed title of document to Stratix V Device Datasheet.
		■ Removed document from the Stratix V handbook and made it a separate document.
February 2012	2.3	■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.
December 2011	2.2	■ Added Table 2–31.
December 2011	L.L	■ Updated Table 2–28 and Table 2–34.
		■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices.
November 2011	2.1	■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.
		■ Various edits throughout to fix SPRs.
		■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24.
May 2011	2.0	■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.
Way 2011		■ Chapter moved to Volume 1.
		■ Minor text edits.
		■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.
December 2010	1.1	■ Converted chapter to the new template.
		■ Minor text edits.
July 2010	1.0	Initial release.