

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                             |
|----------------------------|------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                                    |
| Core Size                  | 32-Bit Single-Core                                                                 |
| Speed                      | 32MHz                                                                              |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, I <sup>2</sup> S, POR, PWM, WDT                            |
| Number of I/O              | 18                                                                                 |
| Program Memory Size        | 16KB (16K x 8)                                                                     |
| Program Memory Type        | FLASH                                                                              |
| EEPROM Size                | -                                                                                  |
| RAM Size                   | 16K x 8                                                                            |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                        |
| Data Converters            | A/D 13x12b                                                                         |
| Oscillator Type            | Internal                                                                           |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                  |
| Mounting Type              | Surface Mount                                                                      |
| Package / Case             | 24-VFQFN Exposed Pad                                                               |
| Supplier Device Package    | PG-VQFN-24-19                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/xmc1301q024f0016abxuma1 |

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### **Table of Contents**

| 5 Quali | ty Declaration | 1 7 | 77 |
|---------|----------------|-----|----|
|---------|----------------|-----|----|



#### Summary of Features

- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
  - CORDIC unit for trigonometric calculation
  - division unit

### **On-Chip Memories**

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

### **Communication Peripherals**

• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

## **Analog Frontend Peripherals**

- A/D Converters
  - up to 12 analog input pins
  - 2 sample and hold stages with 8 analog input channels each
  - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

## **Industrial Control Peripherals**

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

## System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

## Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode



## **Summary of Features**

| Derivative        | Value                                                                                   | Marking |
|-------------------|-----------------------------------------------------------------------------------------|---------|
| XMC1301-T016F0008 | 00013032 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00003000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T016F0016 | 00013032 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00005000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T016F0032 | 00013032 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00009000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T016X0008 | 00013033 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00003000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T016X0016 | 00013033 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00005000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T016X0008 | 00013033 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00003000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T016X0016 | 00013033 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00005000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T016X0032 | 00013033 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00009000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T028X0016 | 00013023 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00005000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T038F0008 | 00013012 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00003000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T038F0016 | 00013012 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00005000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T038F0032 | 00013012 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00009000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T038X0032 | 00013013 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00009000 201ED083 <sub>H</sub> | AB      |
| XMC1301-T038F0064 | 00013012 01CF00FF 00001FF7 0000100F<br>00000C00 00001000 00011000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T038X0016 | 00013013 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00005000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T038X0032 | 00013013 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00009000 201ED083 <sub>H</sub> | AB      |
| XMC1302-T038X0064 | 00013013 01FF00FF 00001FF7 0000900F<br>00000C00 00001000 00011000 201ED083 <sub>H</sub> | AB      |

## Table 4 XMC1300 Chip Identification Number



#### **General Device Information**

| Function | VQFN<br>40  | TSSOP<br>38 | TSSOP<br>28 | VQFN<br>24  | TSSOP<br>16 | Pad<br>Type | Notes                                                                                                                                                                                                                                                                                |  |  |  |  |
|----------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| VSSP     | 31          | 25          | -           | -           | -           | Power       | I/O port ground                                                                                                                                                                                                                                                                      |  |  |  |  |
| VDDP     | 32          | 26          | -           | -           | -           | Power       | I/O port supply                                                                                                                                                                                                                                                                      |  |  |  |  |
| VSSP     | Exp.<br>Pad | -           | -           | Exp.<br>Pad | -           | Power       | Exposed Die<br>Pad<br>The exposed die<br>pad is connected<br>internally to<br>VSSP. For proper<br>operation, it is<br>mandatory to<br>connect the<br>exposed pad to<br>the board ground.<br>For thermal<br>aspects, please<br>refer to the<br>Package and<br>Reliability<br>chapter. |  |  |  |  |

## Table 6Package Pin Mapping (cont'd)

# 2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

## Table 7 Port I/O Function Description

| Function | Outputs  |          | Inputs   | Inputs   |  |  |  |
|----------|----------|----------|----------|----------|--|--|--|
|          | ALT1     | ALTn     | Input    | Input    |  |  |  |
| P0.0     |          | MODA.OUT | MODC.INA |          |  |  |  |
| Pn.y     | MODA.OUT |          | MODA.INA | MODC.INB |  |  |  |



## **General Device Information**



### Figure 9 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn\_IN.y, Pn\_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn\_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

Please refer to the **Port I/O Functions** table for the complete Port I/O function mapping.

# Table 9Port I/O Functions (cont'd)

| Function Outputs |                 |                | Inputs         |      |                 |                           |                         |               |                 |                 |              |                    |                    |                    |              |       |       |
|------------------|-----------------|----------------|----------------|------|-----------------|---------------------------|-------------------------|---------------|-----------------|-----------------|--------------|--------------------|--------------------|--------------------|--------------|-------|-------|
|                  | ALT1            | ALT2           | ALT3           | ALT4 | ALT5            | ALT6                      | ALT7                    | Input         | Input           | Input           | Input        | Input              | Input              | Input              | Input        | Input | Input |
| P2.6             |                 |                |                |      |                 |                           |                         | ACMP1.I<br>NN | VADC0.<br>G0CH0 |                 | ERU0.2A<br>1 | USIC0_C<br>H0.DX3E | USIC0_C<br>H0.DX4E | USIC0_C<br>H1.DX5D | ORC4.AI<br>N |       |       |
| P2.7             |                 |                |                |      |                 |                           |                         | ACMP1.I<br>NP | VADC0.<br>G1CH1 |                 | ERU0.3A<br>1 | USIC0_C<br>H0.DX5C | USIC0_C<br>H1.DX3D | USIC0_C<br>H1.DX4D | ORC5.AI<br>N |       |       |
| P2.8             |                 |                |                |      |                 |                           |                         | ACMP0.I<br>NN | VADC0.<br>G0CH1 | VADC0.<br>G1CH0 | ERU0.3B<br>1 | USIC0_C<br>H0.DX3D | USIC0_C<br>H0.DX4D | USIC0_C<br>H1.DX5C | ORC6.AI<br>N |       |       |
| P2.9             |                 |                |                |      |                 |                           |                         | ACMP0.I<br>NP | VADC0.<br>G0CH2 | VADC0.<br>G1CH4 | ERU0.3B<br>0 | USIC0_C<br>H0.DX5A | USIC0_C<br>H1.DX3B | USIC0_C<br>H1.DX4B | ORC7.AI<br>N |       |       |
| P2.10            | ERU0.<br>PDOUT1 | CCU40.<br>OUT2 | ERU0.<br>GOUT1 |      | CCU80.<br>OUT30 | ACMP0.<br>OUT             | USIC0_C<br>H1.DOUT<br>0 |               | VADC0.<br>G0CH3 | VADC0.<br>G1CH2 | ERU0.2B<br>0 | USIC0_C<br>H0.DX3C | USIC0_C<br>H0.DX4C | USIC0_C<br>H1.DX0F |              |       |       |
| P2.11            | ERU0.<br>PDOUT0 | CCU40.<br>OUT3 | ERU0.<br>GOUT0 |      | CCU80.<br>OUT31 | USIC0_C<br>H1.SCLK<br>OUT | USIC0_C<br>H1.DOUT<br>0 | ACMP.RE<br>F  | VADC0.<br>G0CH4 | VADC0.<br>G1CH3 | ERU0.2B<br>1 | USIC0_C<br>H1.DX0E | USIC0_C<br>H1.DX1E |                    |              |       |       |

Infineon

Data Sheet



# 3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

| Parameter                                                            | Symbol               |    |      | Va   | lues                                | Unit | Note /                |  |
|----------------------------------------------------------------------|----------------------|----|------|------|-------------------------------------|------|-----------------------|--|
|                                                                      |                      |    | Min  | Тур. | Max.                                |      | Test Cond<br>ition    |  |
| Junction temperature                                                 | $T_{J}$              | SR | -40  | -    | 115                                 | °C   | -                     |  |
| Storage temperature                                                  | $T_{\rm ST}$         | SR | -40  | -    | 125                                 | °C   | -                     |  |
| Voltage on power supply pin with respect to $V_{\rm SSP}$            | $V_{DDP}$            | SR | -0.3 | -    | 6                                   | V    | -                     |  |
| Voltage on digital pins with respect to $V_{\rm SSP}{}^{1)}$         | $V_{\sf IN}$         | SR | -0.5 | -    | V <sub>DDP</sub> + 0.5<br>or max. 6 | V    | whichever<br>is lower |  |
| Voltage on P2 pins with respect to $V_{\rm SSP}^{2)}$                | $V_{INP2}$           | SR | -0.3 | -    | V <sub>DDP</sub> + 0.3              | V    | -                     |  |
| Voltage on analog input pins with respect to $V_{\rm SSP}$           | $V_{AIN}$ $V_{AREF}$ | SR | -0.5 | -    | V <sub>DDP</sub> + 0.5<br>or max. 6 | V    | whichever<br>is lower |  |
| Input current on any pin during overload condition                   | I <sub>IN</sub>      | SR | -10  | -    | 10                                  | mA   | -                     |  |
| Absolute maximum sum of all input currents during overload condition | ΣI <sub>IN</sub>     | SR | -50  | -    | +50                                 | mA   | _                     |  |

| Table 11 | Absolute  | Maximum  | Rating | <b>Parameters</b> |
|----------|-----------|----------|--------|-------------------|
|          | 710001010 | maximani | nanng  | i urumotoro       |

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].





### Figure 10 Input Overload Current via ESD structures

 Table 13 and Table 14 list input voltages that can be reached under overload conditions.

 Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

### Table 13 PN-Junction Characterisitics for positive Overload

| Pad Type                             | <i>I</i> <sub>ov</sub> = 5 mA                                                                                                                    |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard, High-current,<br>AN/DIG_IN | $\begin{split} V_{\rm IN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AIN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AREF} &= V_{\rm DDP} + 0.5 \ V \end{split}$ |
| P2.[1,2,6:9,11]                      | $V_{\rm INP2}$ = $V_{\rm DDP}$ + 0.3 V                                                                                                           |

### Table 14 PN-Junction Characterisitics for negative Overload

| Pad Type                             | <i>I</i> <sub>ov</sub> = 5 mA                                                                                                                                   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard, High-current,<br>AN/DIG_IN | $\begin{split} V_{\rm IN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AIN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AREF} &= V_{\rm SS} - 0.5 \ {\rm V} \end{split}$ |
| P2.[1,2,6:9,11]                      | $V_{\rm INP2}$ = $V_{\rm SS}$ - 0.3 V                                                                                                                           |





| Parameter                                                               | Symbol             |    | Limit \                  | /alues                   | Unit | Test Conditions                                                         |  |
|-------------------------------------------------------------------------|--------------------|----|--------------------------|--------------------------|------|-------------------------------------------------------------------------|--|
|                                                                         |                    |    | Min.                     | Max.                     |      |                                                                         |  |
| Input Hysteresis <sup>8)</sup>                                          | HYS                | СС | $0.08 \times V_{ m DDP}$ | -                        | V    | CMOS Mode (5 V),<br>Standard Hysteresis                                 |  |
|                                                                         |                    |    | $0.03 \times V_{ m DDP}$ | -                        | V    | CMOS Mode (3.3 V),<br>Standard Hysteresis                               |  |
|                                                                         |                    |    | $0.02 \times V_{ m DDP}$ | -                        | V    | CMOS Mode (2.2 V),<br>Standard Hysteresis                               |  |
|                                                                         |                    |    | $0.5 	imes V_{ m DDP}$   | $0.75 	imes V_{ m DDP}$  | V    | CMOS Mode(5 V),<br>Large Hysteresis                                     |  |
|                                                                         |                    |    | $0.4 	imes V_{ m DDP}$   | $0.75 \times V_{ m DDP}$ | V    | CMOS Mode(3.3 V),<br>Large Hysteresis                                   |  |
|                                                                         |                    |    | $0.2 \times V_{ m DDP}$  | $0.65 \times V_{ m DDP}$ | V    | CMOS Mode(2.2 V),<br>Large Hysteresis                                   |  |
| Pin capacitance (digital inputs/outputs)                                | $C_{\rm IO}$       | СС | -                        | 10                       | pF   |                                                                         |  |
| Pull-up resistor on port pins                                           | R <sub>PUP</sub>   | СС | 20                       | 50                       | kohm | $V_{\rm IN} = V_{\rm SSP}$                                              |  |
| Pull-down resistor on port pins                                         | R <sub>PDP</sub>   | СС | 20                       | 50                       | kohm | $V_{\rm IN} = V_{\rm DDP}$                                              |  |
| Input leakage current9)                                                 | I <sub>OZP</sub>   | СС | -1                       | 1                        | μA   | $0 < V_{\rm IN} < V_{\rm DDP},$<br>$T_{\rm A} \le 105 \ ^{\circ}{ m C}$ |  |
| Voltage on any pin during $V_{\rm DDP}$ power off                       | $V_{PO}$           | SR | -                        | 0.3                      | V    | 10)                                                                     |  |
| Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$ ) | I <sub>MP</sub>    | SR | -10                      | 11                       | mA   | -                                                                       |  |
| Maximum current per<br>high currrent pins                               | I <sub>MP1A</sub>  | SR | -10                      | 50                       | mA   | -                                                                       |  |
| Maximum current into $V_{\text{DDP}}$ (TSSOP16, VQFN24)                 | $I_{\rm MVDD1}$    | SR | -                        | 130                      | mA   | 18)                                                                     |  |
| Maximum current into $V_{\text{DDP}}$ (TSSOP38, VQFN40)                 | I <sub>MVDD2</sub> | SR | -                        | 260                      | mA   | 18)                                                                     |  |

## Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)



#### Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

| Parameter                                                      | Symbol                | Limit \ | /alues | Unit | Test Conditions |  |
|----------------------------------------------------------------|-----------------------|---------|--------|------|-----------------|--|
|                                                                |                       | Min.    | Max.   |      |                 |  |
| Maximum current out of $V_{\rm SS}$ (TSSOP16, VQFN24)          | I <sub>MVSS1</sub> SR | -       | 130    | mA   | 18)             |  |
| Maximum current out of<br>V <sub>SS</sub> (TSSOP38,<br>VQFN40) | I <sub>MVSS2</sub> SR | -       | 260    | mA   | 18)             |  |

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.

6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.

7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

 Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

9) An additional error current  $(I_{INI})$  will flow if an overload current flows through an adjacent pin.

10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V<sub>DDP</sub> is powered off.





# Figure 13 ORC Detection Ranges



## 3.2.4 Analog Comparator Characteristics

Table 19 below shows the Analog Comparator characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

| Table 19 | Analog Comparator Characteristics (Operating Conditions apply |
|----------|---------------------------------------------------------------|
|----------|---------------------------------------------------------------|

| Parameter                          | Symbol                     |    | Limit Values |       |                            | Unit | Notes/                                                             |
|------------------------------------|----------------------------|----|--------------|-------|----------------------------|------|--------------------------------------------------------------------|
|                                    |                            |    | Min.         | Тур.  | Max.                       |      | Test Conditions                                                    |
| Input Voltage                      | $V_{CMP}$                  | SR | -0.05        | -     | V <sub>DDP</sub> +<br>0.05 | V    |                                                                    |
| Input Offset                       | $V_{CMPOFF}$               | CC | -            | +/-3  | -                          | mV   | High power mode $\Delta V_{\rm CMP}$ < 200 mV                      |
|                                    |                            |    | -            | +/-20 | -                          | mV   | Low power mode $\Delta V_{\rm CMP}$ < 200 mV                       |
| Propagation<br>Delay <sup>1)</sup> | <i>t</i> <sub>PDELAY</sub> | CC | -            | 25    | -                          | ns   | High power mode,<br>$\Delta V_{\rm CMP}$ = 100 mV                  |
|                                    |                            |    | -            | 80    | -                          | ns   | High power mode,<br>$\Delta V_{\rm CMP}$ = 25 mV                   |
|                                    |                            |    | -            | 250   | _                          | ns   | Low power mode, $\Delta V_{\rm CMP}$ = 100 mV                      |
|                                    |                            |    | -            | 700   | -                          | ns   | Low power mode, $\Delta V_{\rm CMP}$ = 25 mV                       |
| Current<br>Consumption             | I <sub>ACMP</sub>          | CC | -            | 100   | -                          | μA   | First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV |
|                                    |                            |    | -            | 66    | -                          | μA   | Each additional ACMP in high power mode, $\Delta V_{CMP}$ > 30 mV  |
|                                    |                            |    | -            | 10    | -                          | μA   | First active ACMP in<br>low power mode                             |
|                                    |                            |    | _            | 6     | -                          | μA   | Each additional<br>ACMP in low power<br>mode                       |
| Input Hysteresis                   | $V_{\rm HYS}$              | CC | -            | +/-15 | -                          | mV   |                                                                    |
| Filter Delay <sup>1)</sup>         | t <sub>FDELAY</sub>        | CC | -            | 5     | -                          | ns   |                                                                    |

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.



**Figure 15** shows typical graphs for sleep mode current for  $V_{DDP} = 5V$ ,  $V_{DDP} = 3.3V$ ,  $V_{DDP} = 1.8V$  across different clock frequencies.



## Figure 15 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I<sub>DDPSR</sub> over supply voltage V<sub>DDP for different clock frequencies</sub>

53



# 3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

| Parameter                                       | Symbol                               |      | Value | S                 | Unit   | Note /                                                                        |  |
|-------------------------------------------------|--------------------------------------|------|-------|-------------------|--------|-------------------------------------------------------------------------------|--|
|                                                 |                                      | Min. | Тур.  | Max.              | -      | Test Condition                                                                |  |
| Erase Time per<br>page / sector                 | t <sub>ERASE</sub> CC                | 6.8  | 7.1   | 7.6               | ms     |                                                                               |  |
| Program time per<br>block                       | t <sub>PSER</sub> CC                 | 102  | 152   | 204               | μs     |                                                                               |  |
| Wake-Up time                                    | t <sub>WU</sub> CC                   | -    | 32.2  | -                 | μs     |                                                                               |  |
| Read time per word                              | t <sub>a</sub> CC                    | -    | 50    | -                 | ns     |                                                                               |  |
| Data Retention Time                             | t <sub>RET</sub> CC                  | 10   | -     | -                 | years  | Max. 100 erase /<br>program cycles                                            |  |
| Flash Wait States 1)                            | N <sub>WSFLASH</sub> CC              | 0    | 0     | 0                 |        | $f_{\rm MCLK} = 8  \rm MHz$                                                   |  |
|                                                 |                                      | 0    | 1     | 1                 |        | $f_{\rm MCLK} = 16  \rm MHz$                                                  |  |
|                                                 |                                      | 1    | 1.3   | 2                 |        | $f_{\rm MCLK} = 32  \rm MHz$                                                  |  |
| Fixed Flash Wait<br>States configured in<br>bit | N <sub>FWSFLASH</sub><br>SR          | 0    | 0     | 1                 |        | NVM_CONFIG1.FI<br>XWS = $1_B$ ,<br>$f_{MCLK} \le 16$ MHz                      |  |
| NVM_NVMCONF.WS                                  |                                      | 1    | 1     | 1                 |        | NVM_CONFIG1.FI<br>XWS = $1_B$ ,<br>$16 \text{ MHz} < f_{MCLK} \le$<br>32  MHz |  |
| Erase Cycles                                    | N <sub>ECYC</sub> CC                 | -    | -     | 5*10 <sup>4</sup> | cycles | Sum of page and sector erase cycles                                           |  |
| Total Erase Cycles                              | $N_{\text{TECYC}} \operatorname{CC}$ | -    | -     | 2*10 <sup>6</sup> | cycles |                                                                               |  |

Table 23 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.



## 3.3.3 On-Chip Oscillator Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 25 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1300.

| Parameter              | Symbol              |    | Limit Values |      |      | Unit                                                        | Test Conditions                                                                                     |
|------------------------|---------------------|----|--------------|------|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                        |                     |    | Min.         | Тур. | Max. |                                                             |                                                                                                     |
| Nominal frequency      | f <sub>nom</sub>    | CC | - 64         | -    | MHz  | under nominal<br>conditions <sup>1)</sup> after<br>trimming |                                                                                                     |
| Accuracy <sup>2)</sup> | $\Delta f_{\rm LT}$ | CC | -1.7         | -    | 3.4  | %                                                           | with respect to $f_{NOM}$ (typ),<br>over temperature<br>$(T_A = 0 \ ^\circ C \ to \ 85 \ ^\circ C)$ |
|                        |                     |    | -3.9         | -    | 4.0  | %                                                           | with respect to $f_{NOM}$ (typ),<br>over temperature<br>$(T_A = -40 \text{ °C to } 105 \text{ °C})$ |

#### Table 25 64 MHz DCO1 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal  $V_{\text{DDC}}$  and  $T_{\text{A}}$  = + 25 °C.

2) The accuracy can be further improved through alternative methods, refer to XMC1000 Oscillator Handling Application Note.





Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.



# 3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.* 

| Table 31 | USIC IIC | Standard | Mode | Timing <sup>1)</sup> |
|----------|----------|----------|------|----------------------|
|----------|----------|----------|------|----------------------|

| Parameter                                              | Symbol                   |      | Values |      | Unit | Note /         |  |
|--------------------------------------------------------|--------------------------|------|--------|------|------|----------------|--|
|                                                        |                          | Min. | Тур.   | Max. |      | Test Condition |  |
| Fall time of both SDA and SCL                          | t <sub>1</sub><br>CC/SR  | -    | -      | 300  | ns   |                |  |
| Rise time of both SDA and SCL                          | t <sub>2</sub><br>CC/SR  | -    | -      | 1000 | ns   |                |  |
| Data hold time                                         | t <sub>3</sub><br>CC/SR  | 0    | -      | -    | μs   |                |  |
| Data set-up time                                       | t <sub>4</sub><br>CC/SR  | 250  | -      | -    | ns   |                |  |
| LOW period of SCL clock                                | t <sub>5</sub><br>CC/SR  | 4.7  | -      | -    | μs   |                |  |
| HIGH period of SCL clock                               | t <sub>6</sub><br>CC/SR  | 4.0  | -      | -    | μs   |                |  |
| Hold time for (repeated)<br>START condition            | t <sub>7</sub><br>CC/SR  | 4.0  | -      | -    | μs   |                |  |
| Set-up time for repeated START condition               | t <sub>8</sub><br>CC/SR  | 4.7  | -      | -    | μs   |                |  |
| Set-up time for STOP condition                         | t <sub>9</sub><br>CC/SR  | 4.0  | -      | -    | μs   |                |  |
| Bus free time between a<br>STOP and START<br>condition | t <sub>10</sub><br>CC/SR | 4.7  | -      | -    | μs   |                |  |
| Capacitive load for each bus line                      | $C_{\rm b}{\rm SR}$      | -    | -      | 400  | pF   |                |  |

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.



# XMC1300 AB-Step XMC1000 Family

## Package and Reliability



Figure 27 PG-TSSOP-28-16



# XMC1300 AB-Step XMC1000 Family

### Package and Reliability



Figure 28 PG-TSSOP-16-8



# XMC1300 AB-Step XMC1000 Family

## Package and Reliability



Figure 29 PG-VQFN-24-19