

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1301t016f0008abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.

The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

• Configurable pad hysteresis

On-Chip Debug Support

- Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1300 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1300 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1300 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1301-T016F0008	PG-TSSOP-16-8	8	16
XMC1301-T016F0016	PG-TSSOP-16-8	16	16
XMC1301-T016F0032	PG-TSSOP-16-8	32	16
XMC1301-T016X0008	PG-TSSOP-16-8	8	16
XMC1301-T016X0016	PG-TSSOP-16-8	16	16
XMC1302-T016X0008	PG-TSSOP-16-8	8	16

Table 1 Synopsis of XMC1300 Device Types

Summary of Features

Derivative	Value	Marking							
XMC1302-Q040X0128	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083 _H	AB							
XMC1302-Q040X0200	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083 _H	AB							

Table 4 XMC1300 Chip Identification Number (cont'd)

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT(standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	13	15	7	STD_IN OUT	
P0.1	24	18	-	-	-	STD_IN OUT	
P0.2	25	19	-	-	-	STD_IN OUT	
P0.3	26	20	-	-	-	STD_IN OUT	
P0.4	27	21	14	-	-	STD_IN OUT	
P0.5	28	22	15	16	8	STD_IN OUT	
P0.6	29	23	16	17	9	STD_IN OUT	

Table 6 Package Pin Mapping

Table 9 Port I/O Functions

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40. OUT0	CCU80. OUT00	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0	BCCU0. TRAPINB	CCU40. IN0C			USIC0_C H0.DX2A	USIC0_C H1.DX2A				
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP		CCU40. IN1C								
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02	CCU80. OUT10		CCU40. IN2C								
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11		CCU40. IN3C								
P0.4	BCCU0. OUT0			CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	WWDT. SERVICE _OUT		CCU80. IN0B								
P0.5	BCCU0. OUT1			CCU40. OUT0	CCU80. OUT12	ACMP2. OUT	CCU80. OUT01		CCU80. IN1B								
P0.6	BCCU0. OUT2			CCU40. OUT0	CCU80. OUT11	USIC0_C H1.MCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN0B			USIC0_C H1.DX0C					
P0.7	BCCU0. OUT3			CCU40. OUT1	CCU80. OUT10	USIC0_C H0.SCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN1B				USIC0_C H1.DX0D				
P0.8	BCCU0. OUT4			CCU40. OUT2	CCU80. OUT20	USIC0_C H0.SCLK OUT	USIC0_C H1.SCLK OUT		CCU40. IN2B			USIC0_C H0.DX1B	USIC0_C H1.DX1B				
P0.9	BCCU0. OUT5			CCU40. OUT3	CCU80. OUT21	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0		CCU40. IN3B			USIC0_C H0.DX2B	USIC0_C H1.DX2B				
P0.10	BCCU0. OUT6			ACMP0. OUT	CCU80. OUT22	USIC0_C H0.SELO 1	USIC0_C H1.SELO 1		CCU80. IN2B			USIC0_C H0.DX2C	USIC0_C H1.DX2C				
P0.11	BCCU0. OUT7			USIC0_C H0.MCLK OUT	CCU80. OUT23	USIC0_C H0.SELO 2	USIC0_C H1.SELO 2					USIC0_C H0.DX2D	USIC0_C H1.DX2D				
P0.12	BCCU0. OUT6				CCU80. OUT33	USIC0_C H0.SELO 3	CCU80. OUT20	BCCU0. TRAPINA	CCU40. IN0A	CCU40. IN1A	CCU40. IN2A	CCU40. IN3A	CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	USIC0_C H0.DX2E
P0.13	WWDT. SERVICE _OUT				CCU80. OUT32	USIC0_C H0.SELO 4	CCU80. OUT21		CCU80. IN3B	POSIF0. IN0B		USIC0_C H0.DX2F					

Infineon

Data Sheet

XMC1300 AB-Step XMC1000 Family

Table 9Port I/O Functions (cont'd)

Function	Outputs	Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P2.6								ACMP1.I NN	VADC0. G0CH0		ERU0.2A 1			USIC0_C H1.DX5D			
P2.7								ACMP1.I NP	VADC0. G1CH1		ERU0.3A 1			USIC0_C H1.DX4D			
P2.8								ACMP0.I NN	VADC0. G0CH1	VADC0. G1CH0	ERU0.3B 1			USIC0_C H1.DX5C			
P2.9								ACMP0.I NP	VADC0. G0CH2	VADC0. G1CH4	ERU0.3B 0			USIC0_C H1.DX4B			
P2.10	ERU0. PDOUT1	CCU40. OUT2	ERU0. GOUT1		CCU80. OUT30		USIC0_C H1.DOUT 0		VADC0. G0CH3	VADC0. G1CH2	ERU0.2B 0		USIC0_C H0.DX4C				
P2.11	ERU0. PDOUT0	CCU40. OUT3	ERU0. GOUT0		CCU80. OUT31	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0		VADC0. G0CH4	VADC0. G1CH3	ERU0.2B 1	USIC0_C H1.DX0E	USIC0_C H1.DX1E				

Infineon

Data Sheet

Table 10 Hardware Controlled I/O Functions

Function	Outputs		Inputs		Pull Control					
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0										
P0.1										
P0.2										
P0.3										
P0.4										
P0.5										
P0.6										
P0.7										
P0.8										
P0.9										
P0.10										
P0.11										
P0.12										
P0.13										
P0.14										
P0.15										
P1.0		USIC0_CH0.DOUT0		USIC0_CH0.HWIN0	BCCU0.OUT2	BCCU0.OUT2				
P1.1		USIC0_CH0.DOUT1		USIC0_CH0.HWIN1	BCCU0.OUT3	BCCU0.OUT3				
P1.2		USIC0_CH0.DOUT2		USIC0_CH0.HWIN2	BCCU0.OUT4	BCCU0.OUT4				
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5				
P1.4					BCCU0.OUT6	BCCU0.OUT6				
P1.5					BCCU0.OUT7	BCCU0.OUT7				
P1.6					BCCU0.OUT8	BCCU0.OUT8				
P2.0					BCCU0.OUT1	BCCU0.OUT1				
2.1					BCCU0.OUT6	BCCU0.OUT6				
2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3		
P2.3					ACMP2.OUT	ACMP2.OUT				
P2.4					BCCU0.OUT8	BCCU0.OUT8				
P2.5					ACMP1.OUT	ACMP1.OUT				

XMC1300 AB-Step XMC1000 Family

Data Sheet

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC1300 is designed in.

3.1.3 Pin Reliability in Overload

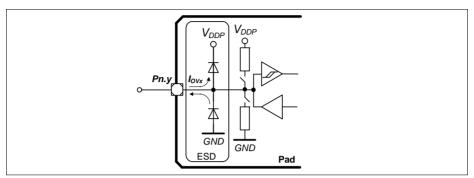
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.


Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Sym	Symbol		Values	5	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA		
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	25	mA		

Table 12 Overload Parameters

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Figure 10 Input Overload Current via ESD structures

 Table 13 and Table 14 list input voltages that can be reached under overload conditions.

 Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

Table 13 PN-Junction Characterisitics for positive Overload

Pad Type	<i>I</i> _{ov} = 5 mA
Standard, High-current, AN/DIG_IN	$\begin{split} V_{\rm IN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AIN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AREF} &= V_{\rm DDP} + 0.5 \ V \end{split}$
P2.[1,2,6:9,11]	$V_{\rm INP2} = V_{\rm DDP} + 0.3 \text{ V}$

Table 14 PN-Junction Characterisitics for negative Overload

Pad Type	<i>I</i> _{OV} = 5 mA
Standard, High-current, AN/DIG_IN	$\begin{split} V_{\rm IN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AIN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AREF} &= V_{\rm SS} - 0.5 \ {\rm V} \end{split}$
P2.[1,2,6:9,11]	$V_{\rm INP2} = V_{\rm SS}$ - 0.3 V

3.2 DC Parameters

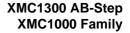

3.2.1 Input/Output Characteristics

Table 16 provides the characteristics of the input/output pins of the XMC1300.

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Parameter	Symbo	ol	Limit	Values	Unit	Test Conditions
			Min.	Max.		
Output low voltage on port pins	V _{OLP}	CC	-	1.0	V	I _{OL} = 11 mA (5 V) I _{OL} = 7 mA (3.3 V)
(with standard pads)			-	0.4	V	$I_{\rm OL}$ = 5 mA (5 V) $I_{\rm OL}$ = 3.5 mA (3.3 V)
Output low voltage on high current pads	V_{OLP1}	СС	-	1.0	V	I _{OL} = 50 mA (5 V) I _{OL} = 25 mA (3.3 V)
			-	0.32	V	I _{OL} = 10 mA (5 V)
			-	0.4	V	I _{OL} = 5 mA (3.3 V)
Output high voltage on port pins	V _{OHP}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)
(with standard pads)			V _{DDP} - 0.4	-	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)
Output high voltage on high current pads	V _{OHP1}	CC	V _{DDP} - 0.32	-	V	I _{OH} = -6 mA (5 V)
			V _{DDP} - 1.0	-	V	I _{OH} = -8 mA (3.3 V)
			V _{DDP} - 0.4	-	V	I _{OH} = -4 mA (3.3 V)
Input low voltage on port pins (Standard Hysteresis)	V_{ILPS}	SR	-	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)

 Table 16
 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
			Min.	Max.			
Input Hysteresis ⁸⁾	HYS	СС	$0.08 imes V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 imes V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 imes V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 imes V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pin capacitance (digital inputs/outputs)	C _{IO}	СС	-	10	pF		
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	CC	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current ⁹⁾	I _{OZP}	CC	-1	1	μA	$0 < V_{\rm IN} < V_{\rm DDP},$ $T_{\rm A} \le 105 \ ^{\circ}{ m C}$	
Voltage on any pin during V_{DDP} power off	$V_{\rm PO}$	SR	-	0.3	V	10)	
Maximum current per pin (excluding P1, V_{DDP} and V_{SS})	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	
Maximum current into V _{DDP} (TSSOP16, VQFN24)	I _{MVDD1}	SR	-	130	mA	18)	
Maximum current into V _{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	18)	

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Table 17 ADC Characteristics (Operating Conditions apply)¹⁾ (cont'd)

Parameter	Symbol	١	/alues	;	Unit	Note / Test Condition	
	Min. Typ. Max.						
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending	
		-	-	f _{ADC} / 54.5	-	2 samples pending	
RMS noise ⁴⁾	<i>EN</i> _{RMS} CC	-	1.5	_	LSB 12	DC input, $V_{DD} = 5.0 \text{ V},$ $V_{AIN = 2.5 \text{ V}},$ 25°C	
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12		
INL error	EA _{INL} CC	-	±4.0	-	LSB 12		
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_B (calibrated)	
Gain error with internal reference ⁵⁾	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C	
		-	±2.0	_	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C	
Offset error	EA _{OFF} CC	-	±8.0	-	mV	Calibrated, $V_{\rm DD}$ = 5.0 V	

1) The parameters are defined for ADC clock frequency f_{SH} = 32MHz, SHSCFG.DIVS = 0000_B. Usage of any other frequencies may affect the ADC performance.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

4) This parameter can also be defined as an SNR value: SNR[dB] = $20 \times \log(A_{MAXeff} / N_{RMS})$. With $A_{MAXeff} = 2^N / 2$, SNR[dB] = $20 \times \log (2048 / N_{RMS})$ [N = 12]. $N_{RMS} = 1.5$ LSB12, therefore, equals SNR = $20 \times \log (2048 / 1.5) = 62.7$ dB.

5) Includes error from the reference voltage.

3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Measurement time	t _M CC	-	-	10	ms	
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C	
Sensor Accuracy ¹⁾	$T_{\text{TSAL}} \operatorname{CC}$	-6	-	6	°C	<i>T</i> _J > 20°C
		-10	-	10	°C	$0^{\circ}C \le T_{J} \le 20^{\circ}C$
		-	-/+8	-	°C	$T_{\rm J}$ < 0°C
Start-up time after enabling	t _{TSSTE} SR	-	-	15	μS	

Table 20 Temperature Sensor Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

3.2.6 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min	Typ. ¹⁾	Max.		
		•				
Active mode current Peripherals enabled $f_{\rm MCLK}/f_{\rm PCLK}$ in MHz ²⁾	I _{DDPAE} CC	-	9.2	12	mA	32 / 64
		-	8.1	-	mA	24 / 48
		_	6.6	-	mA	16 / 32
		_	5.5	-	mA	8 / 16
		_	4	-	mA	1 / 1
Active mode current Peripherals disabled f_{MCLK} / f_{PCLK} in MHz ³⁾	I _{DDPAD} CC	-	4.8	-	mA	32 / 64
		_	4.1	-	mA	24 / 48
		_	3.3	-	mA	16 / 32
		-	2.7	-	mA	8 / 16
		_	1.5	-	mA	1/1
Active mode current Code execution from RAM Flash is powered down f_{MCLK}/f_{PCLK} in MHz	I _{DDPAR} CC	-	7.3	-	mA	32 / 64
		-	6.3	-	mA	24 / 48
		_	5.2	-	mA	16 / 32
		_	4.2	-	mA	8 / 16
		-	3.3	-	mA	1/1
Sleep mode current	I _{DDPSE} CC	-	6.6	-	mA	32 / 64
Peripherals clock enabled			5.8	-	mA	24 / 48
f_{MCLK}/f_{PCLK} in $MHz^{4)}$			5.1	-	mA	16 / 32
			4.4	-	mA	8 / 16
			3.7	-	mA	1/1

Table 21Power Supply Parameters; VVDDP= 5V

Table 32 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	C _b SR	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends

on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

XMC1300 AB-Step XMC1000 Family

Package and Reliability

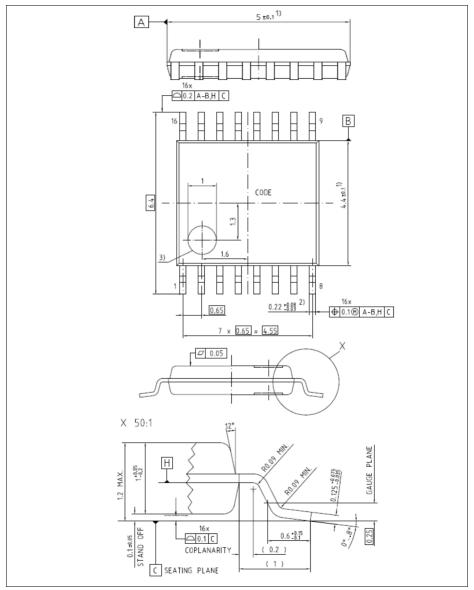


Figure 28 PG-TSSOP-16-8

Quality Declaration

5 Quality Declaration

Table 36 shows the characteristics of the quality parameters in the XMC1300.

Table 36 Quality Parameters

Parameter	Symbol	Limit V	alues	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	$V_{\rm CDM}$ SR	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{ m SDR}$ SR	-	260	°C	Profile according to JEDEC J-STD-020D

www.infineon.com

Published by Infineon Technologies AG