

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1301t016f0032abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 AB-Step

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet V1.9 2017-03

Microcontrollers

Table of Contents

5 Quali	ty Declaration	1 7	77
---------	----------------	-----	----

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.

The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

1.3 Device Type Features

The following table lists the available features per device type.

Derivative	ADC channel	ACMP	BCCU	MATH						
XMC1301-T016	11	2	-	-						
XMC1302-T016	11	2	1	1						
XMC1302-T028	14	3	1	1						
XMC1301-T038	16	3	-	-						
XMC1302-T038	16	3	1	1						
XMC1301-Q024	13	3	-	-						
XMC1302-Q024	13	3	1	1						
XMC1301-Q040	16	3	-	-						
XMC1302-Q040	16	3	1	1						

Table 2 Features of XMC1300 Device Types¹⁾

1) Features that are not included in this table are available in all the derivatives

Table 3 ADC Channels	able 3	ADC Channels ¹⁾
----------------------	--------	----------------------------

Package	VADC0 G0	VADC0 G1
PG-TSSOP-16	CH0CH5	CH0CH4
PG-TSSOP-28	CH0CH7	CH0 CH4, CH7
PG-TSSOP-38	CH0CH7	CH0CH7
PG-VQFN-24	CH0CH7	CH0CH4
PG-VQFN-40	CH0CH7	CH0CH7

1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

1.4 Chip Identification Number

The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : 1000 0F00_H (MSB) - 1000 0F1B_H (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively.

General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC1300 PG-TSSOP-38 Pin Configuration (top view)

Table 10 Hardware Controlled I/O Functions

Function	Outputs		Inputs		Pull Control					
	HWO0	HWO1	ншо	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0										
P0.1										
P0.2										
P0.3										
P0.4										
P0.5										
P0.6										
P0.7										
P0.8										
P0.9										
P0.10										
P0.11										
P0.12										
P0.13										
P0.14										
P0.15										
P1.0		USIC0_CH0.DOUT0		USIC0_CH0.HWIN0	BCCU0.OUT2	BCCU0.OUT2				
P1.1		USIC0_CH0.DOUT1		USIC0_CH0.HWIN1	BCCU0.OUT3	BCCU0.OUT3				
P1.2		USIC0_CH0.DOUT2		USIC0_CH0.HWIN2	BCCU0.OUT4	BCCU0.OUT4				
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5				
P1.4					BCCU0.OUT6	BCCU0.OUT6				
P1.5					BCCU0.OUT7	BCCU0.OUT7				
P1.6					BCCU0.OUT8	BCCU0.OUT8				
P2.0					BCCU0.OUT1	BCCU0.OUT1				
P2.1					BCCU0.OUT6	BCCU0.OUT6				
P2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3		
P2.3					ACMP2.OUT	ACMP2.OUT				
P2.4					BCCU0.OUT8	BCCU0.OUT8				
P2.5					ACMP1.OUT	ACMP1.OUT				

XMC1300 AB-Step XMC1000 Family

Data Sheet

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol			Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	25	mA	

Table 12 Overload Parameters

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

3.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1300. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol			Values		Unit	Note /
			Min.	Тур.	Max.		Test Condition
Ambient Temperature	T _A	SR	-40	-	85	°C	Temp. Range F
			-40	-	105	°C	Temp. Range X
Digital supply voltage ¹⁾	V_{DDP}	SR	1.8	-	5.5	V	
MCLK Frequency	$f_{\rm MCLK}$	CC	-	-	33.2	MHz	CPU clock
PCLK Frequency	f_{PCLK}	СС	-	-	66.4	MHz	Peripherals clock
Short circuit current of digital outputs	I _{SC}	SR	-5	-	5	mA	
Absolute sum of short circuit currents of the device	ΣI _{SC_D}	SR	-	_	25	mA	

Table 15 Operating Conditions Parameters

1) See also the Supply Monitoring thresholds, Chapter 3.3.2.

3.2.3 Out of Range Comparator (ORC) Characteristics

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the V_{DDP} on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol			Values	5	Unit	Note / Test Condition	
			Min.	Тур.	Max.	-		
DC Switching Level	V_{ODC}	CC	54	-	183	mV	$VAIN \ge V_{DDP} + V_{ODC}$	
Hysteresis	$V_{\rm OHYS}$	СС	15	-	54	mV		
Always detected	t _{OPDD}	СС	103	-	-	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
Overvoltage Pulse			88	-	-	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Never detected	t _{OPDN}	СС	—	-	21	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 150 mV	
Overvoltage Pulse			-	-	11	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Detection Delay of a	t _{ODD}	CC	39	-	132	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
persistent Overvoltage			31	-	121	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Release Delay	t _{ORD}	СС	44	-	240	ns	$V_{\text{AIN}} \le V_{\text{DDP}}; V_{\text{DDP}} = 5 \text{ V}$	
			57	-	340	ns	$V_{\text{AIN}} \leq V_{\text{DDP}}; V_{\text{DDP}} = 3.3 \text{ V}$	
Enable Delay	t _{OED}	CC	-	-	300	ns	ORCCTRL.ENORCx = 1	

Table 18Out of Range Comparator (ORC) Characteristics (Operating
Conditions apply; V_{DDP} = 3.0 V - 5.5 V; C₁ = 0.25 pF)

Figure 12 ORCx.OUT Trigger Generation

3.2.4 Analog Comparator Characteristics

Table 19 below shows the Analog Comparator characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19 Analog Comparator Characteristics (Operati	ng Conditions apply)
---	----------------------

Parameter	Symbol		Li	mit Val	ues	Unit	Notes/	
			Min.	Тур.	Max.		Test Conditions	
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V		
Input Offset	V _{CMPOFF}	СС	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV	
			-	+/-20	-	mV	Low power mode $\Delta V_{\rm CMP}$ < 200 mV	
Propagation Delay ¹⁾	t _{PDELAY}	СС	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV	
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	700	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 25 mV	
Current Consumption	I _{ACMP}	CC	-	100	_	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV	
			-	66	-	μA	Each additional ACMP in high power mode, ΔV_{CMP} > 30 mV	
			-	10	-	μA	First active ACMP in low power mode	
			-	6	-	μA	Each additional ACMP in low power mode	
Input Hysteresis	V _{HYS}	CC	-	+/-15	-	mV		
Filter Delay ¹⁾	t _{FDELAY}	CC	-	5	-	ns		

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note /			
		Min.	Тур.	Max.		Test Condition			
Measurement time	t _M CC	_	_	10	ms				
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C				
Sensor Accuracy ¹⁾	$T_{\text{TSAL}} \operatorname{CC}$	-6	-	6	°C	$T_{\rm J}$ > 20°C			
		-10	-	10	°C	$0^{\circ}\mathrm{C} \leq T_{\mathrm{J}} \leq 20^{\circ}\mathrm{C}$			
		-	-/+8	-	°C	$T_{\rm J} < 0^{\circ}{\rm C}$			
Start-up time after enabling	t _{TSSTE} SR	_	-	15	μS				

Table 20 Temperature Sensor Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

3.3.3 On-Chip Oscillator Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 25 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1300.

Parameter	Symbol		Limit Values			Unit	Test Conditions	
			Min.	Тур.	yp. Max.			
Nominal frequency	f _{nom}	CC	-	64	_	MHz	under nominal conditions ¹⁾ after trimming	
Accuracy ²⁾	Δf_{LT}	CC	-1.7	-	3.4	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = 0 \ ^\circ C \ to \ 85 \ ^\circ C)$	
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})$	

Table 25 64 MHz DCO1 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) The accuracy can be further improved through alternative methods, refer to XMC1000 Oscillator Handling Application Note.

Figure 20 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively.

Figure 20 Typical DCO1 accuracy over temperature

Table 26 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1300.

Parameter	Symbol		Limit Values			Unit	Test Conditions			
			Min.	Тур.	Max.					
Nominal frequency	f _{nom}	СС	-	32.75	-	kHz	under nominal conditions ¹⁾ after trimming			
Accuracy	Δf_{LT}	CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C)			
			-3.9	-	4.0	%	with respect to $f_{\rm NOM}$ (typ), over temperature (-40 °C to 105 °C)			

Table 26 32 kHz DCO2 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample	Sampling	Sample	Sample	Effective	Remark
Freq.	Factor	Clocks 0 _B	Clocks 1 _B	Decision	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Figure 23 USIC IIC Stand and Fast Mode Timing

3.3.6.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	$t_2 CC$	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	$t_4 \text{ CC}$	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Table 33 USIC IIS Master Transmitter Timing

Figure 24	USIC IIS Master	Transmitter	Timing

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns		
Clock HIGH	t7 SR	0.35 x t _{6min}	-	-	ns		
Clock Low	<i>t</i> 8 SR	0.35 x <i>t₆min</i>	-	-	ns		
Set-up time	<i>t</i> 9 SR	0.2 x <i>t</i> ₆ min	-	-	ns		
Hold time	<i>t</i> 10 SR	10	-	-	ns		

Table 34	USIC IIS Slave Receiver	Timing
----------	-------------------------	--------

Figure 25 USIC IIS Slave Receiver Timing

www.infineon.com

Published by Infineon Technologies AG