

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1301t038f0032abxuma1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 AB-Step

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet V1.9 2017-03

Microcontrollers

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.

The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

Derivative	Value	Marking					
XMC1302-Q040X0128	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083 _H	AB					
XMC1302-Q040X0200	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083 _H	AB					

Table 4 XMC1300 Chip Identification Number (cont'd)

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC1300 PG-TSSOP-38 Pin Configuration (top view)

l aple o										
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes			
P0.7	30	24	17	18	10	STD_IN OUT				
P0.8	33	27	18	19	11	STD_IN OUT				
P0.9	34	28	19	20	12	STD_IN OUT				
P0.10	35	29	20	-	-	STD_IN OUT				
P0.11	36	30	-	-	-	STD_IN OUT				
P0.12	37	31	21	21	-	STD_IN OUT				
P0.13	38	32	22	22	-	STD_IN OUT				
P0.14	39	33	23	23	13	STD_IN OUT				
P0.15	40	34	24	24	14	STD_IN OUT				
P1.0	22	16	12	14	-	High Current				
P1.1	21	15	11	13	-	High Current				
P1.2	20	14	10	12	-	High Current				
P1.3	19	13	9	11	-	High Current				
P1.4	18	12	-	-	-	High Current				
P1.5	17	11	-	-	-	High Current				
P1.6	16	-	-	-	-	STD_IN OUT				
P2.0	1	35	25	1	15	STD_IN OUT/AN				

Table 6 Package Pin Mapping (cont'd)

Table 9 Port I/O Functions

Function	Outputs				Inputs												
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40. OUT0	CCU80. OUT00	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0	BCCU0. TRAPINB	CCU40. IN0C			USIC0_C H0.DX2A	USIC0_C H1.DX2A				
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP		CCU40. IN1C								
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02	CCU80. OUT10		CCU40. IN2C								
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11		CCU40. IN3C								
P0.4	BCCU0. OUT0			CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	WWDT. SERVICE _OUT		CCU80. IN0B								
P0.5	BCCU0. OUT1			CCU40. OUT0	CCU80. OUT12	ACMP2. OUT	CCU80. OUT01		CCU80. IN1B								
P0.6	BCCU0. OUT2			CCU40. OUT0	CCU80. OUT11	USIC0_C H1.MCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN0B			USIC0_C H1.DX0C					
P0.7	BCCU0. OUT3			CCU40. OUT1	CCU80. OUT10	USIC0_C H0.SCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN1B			USIC0_C H0.DX1C	USIC0_C H1.DX0D	USIC0_C H1.DX1C			
P0.8	BCCU0. OUT4			CCU40. OUT2	CCU80. OUT20	USIC0_C H0.SCLK OUT	USIC0_C H1.SCLK OUT		CCU40. IN2B			USIC0_C H0.DX1B	USIC0_C H1.DX1B				
P0.9	BCCU0. OUT5			CCU40. OUT3	CCU80. OUT21	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0		CCU40. IN3B			USIC0_C H0.DX2B	USIC0_C H1.DX2B				
P0.10	BCCU0. OUT6			ACMP0. OUT	CCU80. OUT22	USIC0_C H0.SELO 1	USIC0_C H1.SELO 1		CCU80. IN2B			USIC0_C H0.DX2C	USIC0_C H1.DX2C				
P0.11	BCCU0. OUT7			USIC0_C H0.MCLK OUT	CCU80. OUT23	USIC0_C H0.SELO 2	USIC0_C H1.SELO 2					USIC0_C H0.DX2D	USIC0_C H1.DX2D				
P0.12	BCCU0. OUT6				CCU80. OUT33	USIC0_C H0.SELO 3	CCU80. OUT20	BCCU0. TRAPINA	CCU40. IN0A	CCU40. IN1A	CCU40. IN2A	CCU40. IN3A	CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	USIC0_C H0.DX2E
P0.13	WWDT. SERVICE _OUT				CCU80. OUT32	USIC0_C H0.SELO 4	CCU80. OUT21		CCU80. IN3B	POSIF0. IN0B		USIC0_C H0.DX2F					

Infineon

Data Sheet

XMC1300 AB-Step XMC1000 Family

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC1300 is designed in.

3.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1300. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol			Values		Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Ambient Temperature	T _A	SR	-40	-	85	°C	Temp. Range F	
			-40	-	105	°C	Temp. Range X	
Digital supply voltage ¹⁾	V_{DDP}	SR	1.8	-	5.5	V		
MCLK Frequency	$f_{\rm MCLK}$	CC	-	-	33.2	MHz	CPU clock	
PCLK Frequency	f_{PCLK}	СС	-	-	66.4	MHz	Peripherals clock	
Short circuit current of digital outputs	I _{SC}	SR	-5	-	5	mA		
Absolute sum of short circuit currents of the device	ΣI _{SC_D}	SR	-	_	25	mA		

Table 15 Operating Conditions Parameters

1) See also the Supply Monitoring thresholds, Chapter 3.3.2.

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol	Limit \	/alues	Unit	Test Conditions	
		Min.	Max.			
Maximum current out of $V_{\rm SS}$ (TSSOP16, VQFN24)	I _{MVSS1} SR	-	130	mA	18)	
Maximum current out of V _{SS} (TSSOP38, VQFN40)	I _{MVSS2} SR	-	260	mA	18)	

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.

6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.

7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

 Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

9) An additional error current (I_{INI}) will flow if an overload current flows through an adjacent pin.

10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note /		
		Min.	Тур.	Max.		Test Condition		
Measurement time	t _M CC	_	_	10	ms			
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C			
Sensor Accuracy ¹⁾	$T_{\text{TSAL}} \operatorname{CC}$	-6	-	6	°C	$T_{\rm J}$ > 20°C		
		-10	-	10	°C	$0^{\circ}\mathrm{C} \leq T_{\mathrm{J}} \leq 20^{\circ}\mathrm{C}$		
		-	-/+8	-	°C	$T_{\rm J} < 0^{\circ}{\rm C}$		
Start-up time after enabling	t _{TSSTE} SR	_	-	15	μS			

Table 20 Temperature Sensor Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

	1	1			1	1	
Parameter	Symbol		Value	s	Unit	Note /	
		Min	Typ. ¹⁾	Max.		Test Condition	
		•					
Sleep mode current	I _{DDPSD} CC	-	1.8	-	mA	32 / 64	
Peripherals clock disabled			1.7	-	mA	24 / 48	
f_{MOLK}/f_{POLK} in MHz ⁵⁾			1.6	-	mA	16 / 32	
JMCLK / JPCLK			1.5	-	mA	8 / 16	
			1.4	-	mA	1/1	
Sleep mode current	I _{DDPSR} CC	-	1.2	-	mA	32 / 64	
Peripherals clock disabled			1.1	-	mA	24 / 48	
f_{MOLK} / f_{POLK} in MHz ⁶⁾			1.0	-	mA	16 / 32	
			0.8	-	mA	8 / 16	
			0.7	-	mA	1/1	
Deep Sleep mode current ⁷⁾	I _{DDPDS} CC	-	0.24	-	mA		
Wake-up time from Sleep to Active mode ⁸⁾	t _{SSA} CC	-	6	-	cycles		
Wake-up time from Deep Sleep to Active mode ⁹⁾	t _{DSA} CC	-	280	-	μsec		

Table 21 Power Supply Parameters; V_{DDP} = 5V

1) The typical values are measured at $T_A = +25 \text{ °C}$ and VDDP = 5 V.

2) CPU and all peripherals clock enabled, Flash is in active mode.

3) CPU enabled, all peripherals clock disabled, Flash is in active mode.

4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU in sleep, Flash is in active mode.

6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.

7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

8) CPU in sleep, Flash is in active mode during sleep mode.

9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

3.3.4 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 27	SWD Interface	Timing Parameters	Operating	Conditions	apply
Table 27	SWD Interface	Timing Parameters	Operating	Conditions	app

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
SWDCLK high time	t1 SR	50	-	500000	ns	-	
SWDCLK low time	$t_2 \mathrm{SR}$	50	-	500000	ns	-	
SWDIO input setup to SWDCLK rising edge	<i>t</i> 3 SR	10	_	_	ns	-	
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	_	
SWDIO output valid time	t ₅ CC	-	-	68	ns	$C_L = 50 \text{ pF}$	
after SWDCLK rising edge		-	-	62	ns	$C_L = 30 \text{ pF}$	
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns		

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample	Sampling	Sample	Sample	Effective	Remark
Freq.	Factor	Clocks 0 _B	Clocks 1 _B	Decision	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

Figure 23 USIC IIC Stand and Fast Mode Timing

3.3.6.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	$t_2 CC$	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	$t_4 \text{ CC}$	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Table 33 USIC IIS Master Transmitter Timing

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends

on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

4.2 **Package Outlines**

