

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-24-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302q024x0016abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 Data Sheet

Revision History: V1.9 2017-03

Previous Version: V1.8 2016-09

Page	Subjects
Page 10, Page 12	Add marking option for XMC1301-T038X0032.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®] and AMBA[®] are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table of Contents

5 Quali	ity Declaration	1 7	77
---------	-----------------	----------------	----

Summary of Features

- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
 - CORDIC unit for trigonometric calculation
 - division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters
 - up to 12 analog input pins
 - 2 sample and hold stages with 8 analog input channels each
 - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode

Summary of Features

1.3 Device Type Features

The following table lists the available features per device type.

Derivative	ADC channel	ACMP	BCCU	MATH
Derivative	Abo channel		8000	MATT
XMC1301-T016	11	2	-	-
XMC1302-T016	11	2	1	1
XMC1302-T028	14	3	1	1
XMC1301-T038	16	3	-	-
XMC1302-T038	16	3	1	1
XMC1301-Q024	13	3	-	-
XMC1302-Q024	13	3	1	1
XMC1301-Q040	16	6 3 -		-
XMC1302-Q040	16	3	1	1

Table 2 Features of XMC1300 Device Types¹⁾

1) Features that are not included in this table are available in all the derivatives

Table 3 ADC C	Channels ¹⁾
---------------	------------------------

Package	VADC0 G0	VADC0 G1
PG-TSSOP-16	CH0CH5	CH0CH4
PG-TSSOP-28	CH0CH7	CH0 CH4, CH7
PG-TSSOP-38	CH0CH7	CH0CH7
PG-VQFN-24	CH0CH7	CH0CH4
PG-VQFN-40	CH0CH7	CH0CH7

1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

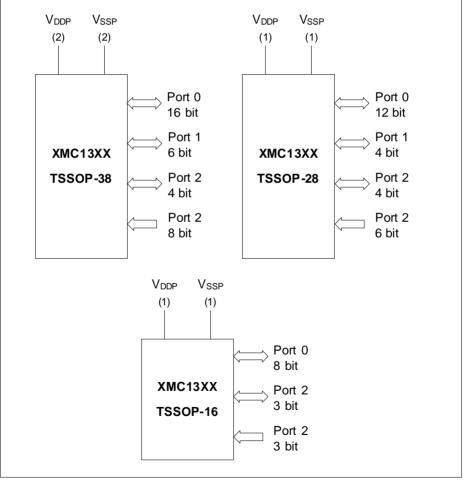
1.4 Chip Identification Number

The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : 1000 0F00_H (MSB) - 1000 0F1B_H (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively.

Summary of Features

Derivative	Value	Marking							
XMC1302-Q040X0128	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083 _H	AB							
XMC1302-Q040X0200	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083 _H	AB							

Table 4 XMC1300 Chip Identification Number (cont'd)



General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

XMC1300 AB-Step XMC1000 Family

General Device Information

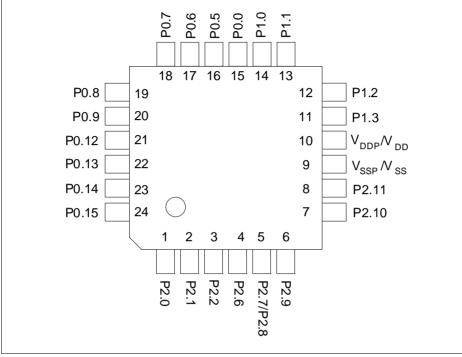


Figure 7 XMC1300 PG-VQFN-24 Pin Configuration (top view)

General Device Information

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
VSSP	31	25	-	-	-	Power	I/O port ground
VDDP	32	26	-	-	-	Power	I/O port supply
VSSP	Exp. Pad	-	-	Exp. Pad	-	Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground For thermal aspects, please refer to the Package and Reliability chapter.

Table 6Package Pin Mapping (cont'd)

2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs				
	ALT1	ALTn	Input	Input			
P0.0		MODA.OUT	MODC.INA				
Pn.y	MODA.OUT		MODA.INA	MODC.INB			

Table 9 Port I/O Functions

Function	Outputs	Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40. OUT0	CCU80. OUT00	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0	BCCU0. TRAPINB	CCU40. IN0C			USIC0_C H0.DX2A	USIC0_C H1.DX2A				
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP		CCU40. IN1C								
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02	CCU80. OUT10		CCU40. IN2C								
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11		CCU40. IN3C								
P0.4	BCCU0. OUT0			CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	WWDT. SERVICE _OUT		CCU80. IN0B								
P0.5	BCCU0. OUT1			CCU40. OUT0	CCU80. OUT12	ACMP2. OUT	CCU80. OUT01		CCU80. IN1B								
P0.6	BCCU0. OUT2			CCU40. OUT0	CCU80. OUT11	USIC0_C H1.MCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN0B			USIC0_C H1.DX0C					
P0.7	BCCU0. OUT3			CCU40. OUT1	CCU80. OUT10	USIC0_C H0.SCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN1B				USIC0_C H1.DX0D				
P0.8	BCCU0. OUT4			CCU40. OUT2	CCU80. OUT20	USIC0_C H0.SCLK OUT	USIC0_C H1.SCLK OUT		CCU40. IN2B			USIC0_C H0.DX1B	USIC0_C H1.DX1B				
P0.9	BCCU0. OUT5			CCU40. OUT3	CCU80. OUT21	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0		CCU40. IN3B			USIC0_C H0.DX2B	USIC0_C H1.DX2B				
P0.10	BCCU0. OUT6			ACMP0. OUT	CCU80. OUT22	USIC0_C H0.SELO 1	USIC0_C H1.SELO 1		CCU80. IN2B			USIC0_C H0.DX2C	USIC0_C H1.DX2C				
P0.11	BCCU0. OUT7			USIC0_C H0.MCLK OUT	CCU80. OUT23	USIC0_C H0.SELO 2	USIC0_C H1.SELO 2					USIC0_C H0.DX2D	USIC0_C H1.DX2D				
P0.12	BCCU0. OUT6				CCU80. OUT33	USIC0_C H0.SELO 3	CCU80. OUT20	BCCU0. TRAPINA	CCU40. IN0A	CCU40. IN1A	CCU40. IN2A	CCU40. IN3A	CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	USIC0_C H0.DX2E
P0.13	WWDT. SERVICE _OUT				CCU80. OUT32	USIC0_C H0.SELO 4	CCU80. OUT21		CCU80. IN3B	POSIF0. IN0B		USIC0_C H0.DX2F					

Infineon

Data Sheet

XMC1300 AB-Step XMC1000 Family

Table 10 Hardware Controlled I/O Functions (cont'd)

Function	Outputs		Inputs		Pull Control					
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P2.6					BCCU0.OUT2	BCCU0.OUT2	CCU40.OUT3	CCU40.OUT3		
P2.7					BCCU0.OUT8	BCCU0.OUT8	CCU40.OUT3	CCU40.OUT3		
P2.8					BCCU0.OUT1	BCCU0.OUT1	CCU40.OUT2	CCU40.OUT2		
P2.9					BCCU0.OUT7	BCCU0.OUT7	CCU40.OUT2	CCU40.OUT2		
P2.10					BCCU0.OUT4	BCCU0.OUT4				
P2.11					BCCU0.OUT5	BCCU0.OUT5				

Infineon

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC1300 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	ol		Va	lues	Unit	Note /
			Min Typ.		Max.	-	Test Cond ition
Junction temperature	T_{J}	SR	-40	-	115	°C	-
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-
Voltage on digital pins with respect to $V_{\rm SSP}{}^{1)}$	$V_{\rm IN}$	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on P2 pins with respect to $V_{\rm SSP}{}^{2)}$	$V_{\rm INP2}$	SR	-0.3	-	V _{DDP} + 0.3	V	-
Voltage on analog input pins with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute maximum sum of all input currents during overload condition	ΣI _{IN}	SR	-50	-	+50	mA	-

Table 11 Absolute Maximum Rating Parameters

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	25	mA	

Table 12 Overload Parameters

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

3.2.6 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min	Typ. ¹⁾	Max.		
		•				
Active mode current Peripherals enabled $f_{\rm MCLK}/f_{\rm PCLK}$ in MHz ²⁾	I _{DDPAE} CC	-	9.2	12	mA	32 / 64
		-	8.1	-	mA	24 / 48
		_	6.6	-	mA	16 / 32
		_	5.5	-	mA	8 / 16
		_	4	-	mA	1 / 1
Active mode current Peripherals disabled f_{MCLK}/f_{PCLK} in MHz ³⁾	I _{DDPAD} CC	-	4.8	-	mA	32 / 64
		_	4.1	-	mA	24 / 48
		_	3.3	-	mA	16 / 32
		-	2.7	-	mA	8 / 16
		_	1.5	-	mA	1/1
Active mode current Code execution from RAM Flash is powered down $f_{\rm MCLK}/f_{\rm PCLK}$ in MHz	I _{DDPAR} CC	-	7.3	-	mA	32 / 64
		-	6.3	-	mA	24 / 48
		_	5.2	-	mA	16 / 32
		_	4.2	-	mA	8 / 16
		-	3.3	-	mA	1/1
Sleep mode current Peripherals clock enabled $f_{\rm MCLK}/f_{\rm PCLK}$ in $\rm MHz^{4)}$	I _{DDPSE} CC	-	6.6	-	mA	32 / 64
			5.8	-	mA	24 / 48
			5.1	-	mA	16 / 32
			4.4	-	mA	8 / 16
			3.7	-	mA	1/1

Table 21Power Supply Parameters; VVDDP= 5V

Figure 14 shows typical graphs for active mode supply current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

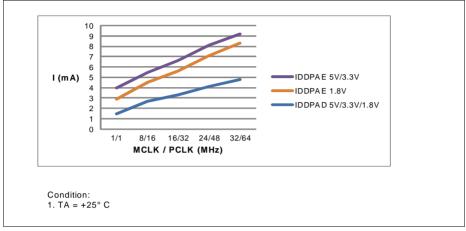
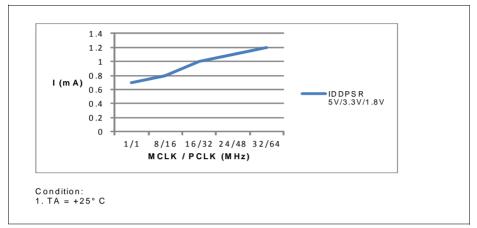



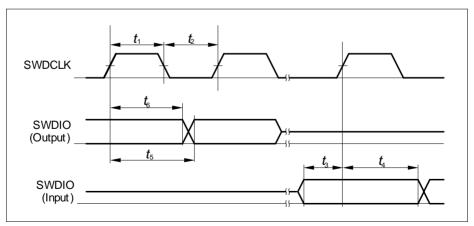
Figure 14 Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current I_{DDPA} over supply voltage V_{DDP for different clock}

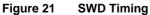
frequencies

Figure 15 shows typical graphs for sleep mode current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

Figure 15 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I_{DDPSR} over supply voltage V_{DDP for different clock frequencies}

53


3.3.4 Serial Wire Debug Port (SW-DP) Timing


The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

	Table 27	SWD Interface T	iming Parameters(Operating	Conditions apply)
--	----------	-----------------	-------------------	-----------	-------------------

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
SWDCLK high time	<i>t</i> 1 SR	50	-	500000	ns	-
SWDCLK low time	$t_2 \mathrm{SR}$	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	<i>t</i> 3 SR	10	-	-	ns	-
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-
SWDIO output valid time	t ₅ CC	-	-	68	ns	C _L = 50 pF
after SWDCLK rising edge		-	-	62	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns	

3.3.6 Peripheral Timings

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 29 USIC SSC Master Mode Timing

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
SCLKOUT master clock period	t _{CLK} CC	62.5	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	80	-	_	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	0	-	-	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	80	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	0	-	-	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Package and Reliability

4 Package and Reliability

The XMC1300 is a member of the XMC1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 35 provides the thermal characteristics of the packages used in XMC1300.

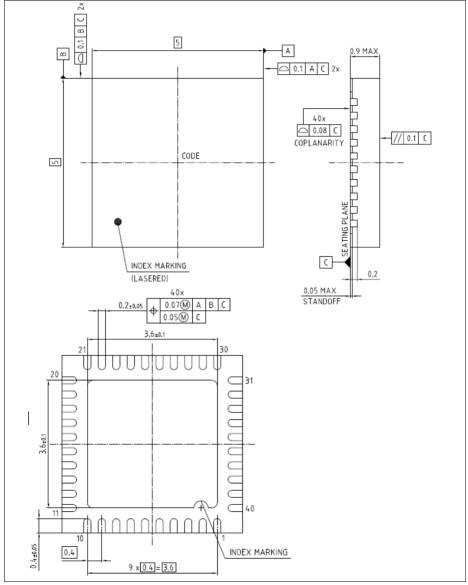
Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad	$E x \times E y$	-	2.7 imes 2.7	mm	PG-VQFN-24-19	
Dimensions	CC	-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance Junction-Ambient	$R_{\Theta JA}$ CC	-	104.6	K/W	PG-TSSOP-16-8 ¹⁾	
		-	83.2	K/W	PG-TSSOP-28-16 ¹⁾	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-13 ¹⁾	

 Table 35
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations


When operating the XMC1300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

XMC1300 AB-Step XMC1000 Family

Package and Reliability

Figure 30 PG-VQFN-40-13

All dimensions in mm.