

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	18
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-24-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302q024x0064abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 AB-Step

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet V1.9 2017-03

Microcontrollers

XMC1300 Data Sheet

Revision History: V1.9 2017-03

Previous Version: V1.8 2016-09

Page	Subjects
Page 10, Page 12	Add marking option for XMC1301-T038X0032.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

• Configurable pad hysteresis

On-Chip Debug Support

- Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1300 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1300 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1300 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1301-T016F0008	PG-TSSOP-16-8	8	16
XMC1301-T016F0016	PG-TSSOP-16-8	16	16
XMC1301-T016F0032	PG-TSSOP-16-8	32	16
XMC1301-T016X0008	PG-TSSOP-16-8	8	16
XMC1301-T016X0016	PG-TSSOP-16-8	16	16
XMC1302-T016X0008	PG-TSSOP-16-8	8	16

Table 1 Synopsis of XMC1300 Device Types

Table 9Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT			POSIF0. IN1B		USIC0_C H0.DX0A	USIC0_C H0.DX1A				
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_C H0.DOUT 0	USIC0_C H1.MCLK OUT			POSIF0. IN2B		USIC0_C H0.DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCU80. OUT00	ACMP1. OUT	USIC0_C H0.DOUT 0			POSIF0. IN2A		USIC0_C H0.DX0C					
P1.1	VADC0. EMUX00	CCU40. OUT1			CCU80. OUT01	USIC0_C H0.DOUT 0	USIC0_C H1.SELO 0			POSIF0. IN1A		USIC0_C H0.DX0D	USIC0_C H0.DX1D	USIC0_C H1.DX2E			
P1.2	VADC0. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	USIC0_C H1.DOUT 0			POSIF0. IN0A		USIC0_C H1.DX0B					
P1.3	VADC0. EMUX02	CCU40. OUT3			CCU80. OUT11	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0					USIC0_C H1.DX0A	USIC0_C H1.DX1A				
P1.4	VADC0. EMUX10	USIC0_C H1.SCLK OUT			CCU80. OUT20	USIC0_C H0.SELO 0	USIC0_C H1.SELO 1					USIC0_C H0.DX5E	USIC0_C H1.DX5E				
P1.5	VADC0. EMUX11	USIC0_C H0.DOUT 0		BCCU0. OUT1	CCU80. OUT21	USIC0_C H0.SELO 1	USIC0_C H1.SELO 2					USIC0_C H1.DX5F					
P1.6	VADC0. EMUX12	USIC0_C H1.DOUT 0		USIC0_C H0.SCLK OUT	BCCU0. OUT2	USIC0_C H0.SELO 2	USIC0_C H1.SELO 3			USIC0_C H0.DX5F							
P2.0	ERU0. PDOUT3	CCU40. OUT0	ERU0. GOUT3		CCU80. OUT20	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT		VADC0. G0CH5		ERU0.0B 0	USIC0_C H0.DX0E	USIC0_C H0.DX1E	USIC0_C H1.DX2F			
P2.1	ERU0. PDOUT2	CCU40. OUT1	ERU0. GOUT2		CCU80. OUT21	USIC0_C H0.DOUT 0	USIC0_C H1.SCLK OUT	ACMP2.I NP	VADC0. G0CH6		ERU0.1B 0	USIC0_C H0.DX0F	USIC0_C H1.DX3A	USIC0_C H1.DX4A			
P2.2								ACMP2.I NN	VADC0. G0CH7		ERU0.0B 1	USIC0_C H0.DX3A	USIC0_C H0.DX4A	USIC0_C H1.DX5A	ORC0.AI N		
P2.3									VADC0. G1CH5		ERU0.1B 1	USIC0_C H0.DX5B	USIC0_C H1.DX3C	USIC0_C H1.DX4C	ORC1.AI N		
P2.4									VADC0. G1CH6		ERU0.0A 1	USIC0_C H0.DX3B	USIC0_C H0.DX4B	USIC0_C H1.DX5B	ORC2.AI N		
P2.5									VADC0. G1CH7		ERU0.1A 1	USIC0_C H0.DX5D	USIC0_C H1.DX3E	USIC0_C H1.DX4E	ORC3.AI N		

Infineon

XMC1300 AB-Step XMC1000 Family

Data Sheet

Table 10 Hardware Controlled I/O Functions

Function	Outputs		Inputs		Pull Control				
	HWO0	HWO1	ншо	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU	
P0.0									
P0.1									
P0.2									
P0.3									
P0.4									
P0.5									
P0.6									
P0.7									
P0.8									
P0.9									
P0.10									
P0.11									
P0.12									
P0.13									
P0.14									
P0.15									
P1.0		USIC0_CH0.DOUT0		USIC0_CH0.HWIN0	BCCU0.OUT2	BCCU0.OUT2			
P1.1		USIC0_CH0.DOUT1		USIC0_CH0.HWIN1	BCCU0.OUT3	BCCU0.OUT3			
P1.2		USIC0_CH0.DOUT2		USIC0_CH0.HWIN2	BCCU0.OUT4	BCCU0.OUT4			
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5			
P1.4					BCCU0.OUT6	BCCU0.OUT6			
P1.5					BCCU0.OUT7	BCCU0.OUT7			
P1.6					BCCU0.OUT8	BCCU0.OUT8			
P2.0					BCCU0.OUT1	BCCU0.OUT1			
P2.1					BCCU0.OUT6	BCCU0.OUT6			
P2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3	
P2.3					ACMP2.OUT	ACMP2.OUT			
P2.4					BCCU0.OUT8	BCCU0.OUT8			
P2.5					ACMP1.OUT	ACMP1.OUT			

XMC1300 AB-Step XMC1000 Family

Data Sheet

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC1300 is designed in.

Parameter	Symbol		Limit \	/alues	Unit	Test Conditions	
			Min.	Max.			
Input Hysteresis ⁸⁾	HYS	СС	$0.08 \times V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 \times V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 \times V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 \times V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 \times V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pin capacitance (digital inputs/outputs)	$C_{\rm IO}$	СС	-	10	pF		
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current9)	I _{OZP}	СС	-1	1	μA	$0 < V_{\rm IN} < V_{\rm DDP},$ $T_{\rm A} \le 105 \ ^{\circ}{ m C}$	
Voltage on any pin during $V_{\rm DDP}$ power off	V_{PO}	SR	-	0.3	V	10)	
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	
Maximum current into V_{DDP} (TSSOP16, VQFN24)	$I_{\rm MVDD1}$	SR	-	130	mA	18)	
Maximum current into V_{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	18)	

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Table 17	ADC Characteristics	Operating	Conditions	apply)1) (cont'd)
----------	---------------------	-----------	-------------------	-------------------

Parameter	Symbol	Values U		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Gain settings	$G_{\sf IN}\sf CC$	1			_	GNCTRxz.GAINy=00 _B (unity gain)
		3			_	GNCTRxz.GAINy=01 _B (gain g1)
		6			_	$GNCTRxz.GAINy = 10_B$ (gain g2)
		12			_	GNCTRxz.GAINy=11 _B (gain g3)
Sample Time	$t_{\text{sample}} \operatorname{CC}$	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		3	-	-	1 / f _{ADC}	V _{DD} = 3.3 V
		30	-	-	1 / f _{ADC}	V _{DD} = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20	-	_	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC	9	1	1	1 / <i>f</i> _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC	20			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} CC$	_	-	f _{ADC} / 42.5	-	1 sample pending
		_	-	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	f _{C10} CC	_	-	f _{ADC} / 40.5	-	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC	16			1 / <i>f</i> _{ADC}	2)

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note / Test Condition		
		Min.	Тур.	Max.				
Measurement time	t _M CC	_	_	10	ms			
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C			
Sensor Accuracy ¹⁾	$T_{\text{TSAL}} \operatorname{CC}$	-6	-	6	°C	$T_{\rm J}$ > 20°C		
		-10	-	10	°C	$0^{\circ}\mathrm{C} \leq T_{\mathrm{J}} \leq 20^{\circ}\mathrm{C}$		
		-	-/+8	-	°C	$T_{\rm J} < 0^{\circ}{\rm C}$		
Start-up time after enabling	t _{TSSTE} SR	_	-	15	μS			

Table 20 Temperature Sensor Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

	1	1			1		
Parameter	Symbol		Value	s	Unit	Note /	
		Min	Typ. ¹⁾	Max.		Test Condition	
		•					
Sleep mode current	$I_{\rm DDPSD}{\rm CC}$	-	1.8	-	mA	32 / 64	
Peripherals clock disabled			1.7	-	mA	24 / 48	
f_{MOLK}/f_{POLK} in MHz ⁵⁾			1.6	-	mA	16 / 32	
			1.5	-	mA	8 / 16	
			1.4	-	mA	1/1	
Sleep mode current	I _{DDPSR} CC	-	1.2	-	mA	32 / 64	
Peripherals clock disabled			1.1	-	mA	24 / 48	
f_{MOLK} / f_{POLK} in MHz ⁶⁾			1.0	-	mA	16 / 32	
			0.8	-	mA	8 / 16	
			0.7	-	mA	1/1	
Deep Sleep mode current ⁷⁾	I _{DDPDS} CC	-	0.24	-	mA		
Wake-up time from Sleep to Active mode ⁸⁾	t _{SSA} CC	-	6	-	cycles		
Wake-up time from Deep Sleep to Active mode ⁹⁾	t _{DSA} CC	-	280	-	μsec		

Table 21 Power Supply Parameters; V_{DDP} = 5V

1) The typical values are measured at $T_A = +25 \text{ °C}$ and VDDP = 5 V.

2) CPU and all peripherals clock enabled, Flash is in active mode.

3) CPU enabled, all peripherals clock disabled, Flash is in active mode.

4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU in sleep, Flash is in active mode.

6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.

7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

8) CPU in sleep, Flash is in active mode during sleep mode.

9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

Table 22 provides the active current consumption of some modules operating at 5 V power supply at 25° C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition				
		Тур.						
Baseload current	I _{CPUDDC}	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ¹⁾				
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ²⁾				
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 1 ³⁾				
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁴⁾				
CCU80	I _{CCU80DDC}	0.42	mA	Set CGATCLR0.CCU80 to 1 ⁵⁾				
POSIF0	I _{PIF0DDC}	0.26	mA	Set CGATCLR0.POSIF0 to 16)				
BCCU0	I _{BCCU0DDC}	0.24	mA	Set CGATCLR0.BCCU0 to 17)				
MATH	I _{MATHDDC}	0.35	mA	Set CGATCLR0.MATH to 18)				
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 19)				
RTC	$I_{\rm RTCDDC}$	0.01	mA	Set CGATCLR0.RTC to 1 ¹⁰⁾				

Table 22 Typical Active Current Consumption

1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle

- Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU8 slice with PWM frequency at 1500Hz and a period match interrupt used to toggle duty cycle between 10% and 90%
- 6) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, hall sensor mode
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, tangent calculation in while loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11
- Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s
- 10) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.3.2 Power-Up and Supply Monitoring Characteristics

Table 24 provides the characteristics of the power-up and supply monitoring inXMC1300.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while V_{DDP} is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Parameter	Symbol	V	alues		Unit	Note /	
		Min.	Тур.	Max.	1	Test Condition	
$V_{\rm DDP}$ ramp-up time	<i>t</i> _{RAMPUP} SR	$V_{ m DDP}/$ $S_{ m VDDPrise}$	_	10 ⁷	μs		
$V_{\rm DDP}$ slew rate	$S_{\rm VDDPOP}~{ m SR}$	0	_	0.1	V/µs	Slope during normal operation	
	S _{VDDP10} SR	0	_	10	V/µs	Slope during fast transient within +/- 10% of V_{DDP}	
	S _{VDDPrise} SR	0	_	10	V/µs	Slope during power-on or restart after brownout event	
	S _{VDDPfall} ¹⁾ SR	0	-	0.25	V/µs	Slope during supply falling out of the +/-10% limits ²⁾	
V_{DDP} prewarning voltage	$V_{DDPPW}CC$	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B	
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B	
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B	

Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 24	Power-Up and Supply Monitoring Parameters (Operating Conditions
	apply) (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
V_{DDP} brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
Start-up time from power-on reset	t _{SSW} SR	-	320	-	μS	Time to the first user code instruction ³⁾
BMI program time	t _{BMI} SR	-	8.25	-	ms	Time taken from a user-triggered system reset after BMI installation is is requested

1) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter.

2) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.

3) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

Figure 19 Supply Threshold Parameters

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample	Sampling	Sample	Sample	Effective	Remark
Freq.	Factor	Clocks 0 _B	Clocks 1 _B	Decision	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

3.3.6 Peripheral Timings

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 29 USIC SSC Master Mode Timing

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
SCLKOUT master clock period	t _{CLK} CC	62.5	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	80	_	_	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	0	_	_	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	80	_	_	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	0	-	_	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Package and Reliability

4 Package and Reliability

The XMC1300 is a member of the XMC1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 35 provides the thermal characteristics of the packages used in XMC1300.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad	$E x \times E y$	-	2.7 imes 2.7	mm	PG-VQFN-24-19	
Dimensions	CC	-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance	$R_{\Theta JA}$ CC	-	104.6	K/W	PG-TSSOP-16-8 ¹⁾	
Junction-Ambient		-	83.2	K/W	PG-TSSOP-28-16 ¹⁾	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-13 ¹⁾	

 Table 35
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends

on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

XMC1300 AB-Step XMC1000 Family

Package and Reliability

Figure 29 PG-VQFN-24-19