

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-40-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302q040x0032abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2017-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC1300 Data Sheet

Revision History: V1.9 2017-03

Previous Version: V1.8 2016-09

Page	Subjects
Page 10, Page 12	Add marking option for XMC1301-T038X0032.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®] and AMBA[®] are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.

The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
 - CORDIC unit for trigonometric calculation
 - division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters
 - up to 12 analog input pins
 - 2 sample and hold stages with 8 analog input channels each
 - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode

Summary of Features

Derivative	Value	Marking
XMC1301-T016F0008	00013032 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083 _H	AB
XMC1301-T016F0016	00013032 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083 _H	AB
XMC1301-T016F0032	00013032 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083 _H	AB
XMC1301-T016X0008	00013033 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083 _H	AB
XMC1301-T016X0016	00013033 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083 _H	AB
XMC1302-T016X0008	00013033 01FF00FF 00001FF7 0000900F 00000C00 00001000 00003000 201ED083 _H	AB
XMC1302-T016X0016	00013033 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083 _H	AB
XMC1302-T016X0032	00013033 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083 _H	AB
XMC1302-T028X0016	00013023 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083 _H	AB
XMC1301-T038F0008	00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083 _H	AB
XMC1301-T038F0016	00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083 _H	AB
XMC1301-T038F0032	00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083 _H	AB
XMC1301-T038X0032	00013013 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083 _H	AB
XMC1301-T038F0064	00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00011000 201ED083 _H	AB
XMC1302-T038X0016	00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083 _H	AB
XMC1302-T038X0032	00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083 _H	AB
XMC1302-T038X0064	00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00011000 201ED083 _H	AB

Table 4 XMC1300 Chip Identification Number

Summary of Features

Derivative	Value	Marking							
XMC1302-Q040X0128	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083 _H	AB							
XMC1302-Q040X0200	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083 _H	AB							

Table 4 XMC1300 Chip Identification Number (cont'd)

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT(standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	13	15	7	STD_IN OUT	
P0.1	24	18	-	-	-	STD_IN OUT	
P0.2	25	19	-	-	-	STD_IN OUT	
P0.3	26	20	-	-	-	STD_IN OUT	
P0.4	27	21	14	-	-	STD_IN OUT	
P0.5	28	22	15	16	8	STD_IN OUT	
P0.6	29	23	16	17	9	STD_IN OUT	

Table 6 Package Pin Mapping

Table 6 Package Pin Mapping (cont'd)								
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes	
P2.1	2	36	26	2	-	STD_IN OUT/AN		
P2.2	3	37	27	3	-	STD_IN/ AN		
P2.3	4	38	-	-	-	STD_IN/ AN		
P2.4	5	1	-	-	-	STD_IN/ AN		
P2.5	6	2	28	-	-	STD_IN/ AN		
P2.6	7	3	1	4	16	STD_IN/ AN		
P2.7	8	4	2	5	1	STD_IN/ AN		
P2.8	9	5	3	5	1	STD_IN/ AN		
P2.9	10	6	4	6	2	STD_IN/ AN		
P2.10	11	7	5	7	3	STD_IN OUT/AN		
P2.11	12	8	6	8	4	STD_IN OUT/AN		
VSS	13	9	7	9	5	Power	Supply GND, ADC reference GND	
VDD	14	10	8	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage	
VDDP	15	10	8	10	6	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.	

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
VSSP	31	25	-	-	-	Power	I/O port ground
VDDP	32	26	-	-	-	Power	I/O port supply
VSSP	Exp. Pad	-	-	Exp. Pad	-	Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground For thermal aspects, please refer to the Package and Reliability chapter.

Table 6Package Pin Mapping (cont'd)

2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs		
	ALT1	ALT1 ALTn		Input	
P0.0		MODA.OUT	MODC.INA		
Pn.y	MODA.OUT		MODA.INA	MODC.INB	

2.2.3 Hardware Controlled I/O Function Description

The following general building block is used to describe the hardware I/O and pull control functions of each PORT pin:

Function	Outputs	Inputs	Pull Control			
	HWO0	HWIO	HW0_PD	HW0_PU		
P0.0	MODB.OUT	MODB.INA				
Pn.y			MODC.OUT	MODC.OUT		

Table 8 Hardware Controlled I/O Function Description

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Additional hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the peripherals can be used to control the pull devices of the pin.

Please refer to the **Hardware Controlled I/O Functions** table for the complete hardware I/O and pull control function mapping.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /
			Min	Тур.	Max.		Test Cond ition
Junction temperature	T_{J}	SR	-40	_	115	°C	-
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-
Voltage on digital pins with respect to $V_{\rm SSP}^{1)}$	$V_{\rm IN}$	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on P2 pins with respect to $V_{\rm SSP}^{2)}$	V_{INP2}	SR	-0.3	-	V _{DDP} + 0.3	V	-
Voltage on analog input pins with respect to $V_{\rm SSP}$	$\begin{array}{c} V_{\rm AIN} \\ V_{\rm AREF} \end{array}$	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute maximum sum of all input currents during overload condition	ΣI _{IN}	SR	-50	-	+50	mA	-

Table 11 Absolute Maximum Rating Parameters

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

3.2 DC Parameters

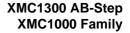

3.2.1 Input/Output Characteristics

Table 16 provides the characteristics of the input/output pins of the XMC1300.

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			Min.	Max.		
Output low voltage on port pins	V _{OLP}	CC	-	1.0	V	I _{OL} = 11 mA (5 V) I _{OL} = 7 mA (3.3 V)
(with standard pads)			-	0.4	V	$I_{OL} = 5 \text{ mA} (5 \text{ V})$ $I_{OL} = 3.5 \text{ mA} (3.3 \text{ V})$
Output low voltage on high current pads	V_{OLP1}	СС	-	1.0	V	I _{OL} = 50 mA (5 V) I _{OL} = 25 mA (3.3 V)
			-	0.32	V	I _{OL} = 10 mA (5 V)
			-	0.4	V	I _{OL} = 5 mA (3.3 V)
Output high voltage on port pins	V _{OHP}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)
(with standard pads)			V _{DDP} - 0.4	_	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)
Output high voltage on high current pads	V _{OHP1}	CC	V _{DDP} - 0.32	-	V	I _{OH} = -6 mA (5 V)
			V _{DDP} - 1.0	_	V	I _{OH} = -8 mA (3.3 V)
			V _{DDP} - 0.4	_	V	I _{OH} = -4 mA (3.3 V)
Input low voltage on port pins (Standard Hysteresis)	V_{ILPS}	SR	-	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)

 Table 16
 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			Min. Max.				
Input Hysteresis ⁸⁾	HYS	СС	$0.08 imes V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 imes V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 imes V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 imes V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pin capacitance (digital inputs/outputs)	C _{IO}	СС	-	10	pF		
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	CC	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current ⁹⁾	I _{OZP}	CC	-1	1	μA	$0 < V_{\rm IN} < V_{\rm DDP},$ $T_{\rm A} \le 105 \ ^{\circ}{ m C}$	
Voltage on any pin during V_{DDP} power off	$V_{\rm PO}$	SR	-	0.3	V	10)	
Maximum current per pin (excluding P1, V_{DDP} and V_{SS})	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	
Maximum current into V _{DDP} (TSSOP16, VQFN24)	I _{MVDD1}	SR	-	130	mA	18)	
Maximum current into V _{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	18)	

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol	Limit	Values	Unit	Test Conditions
		Min.	Max.		
Maximum current out of $V_{\rm SS}$ (TSSOP16, VQFN24)	I _{MVSS1} SF	-	130	mA	18)
Maximum current out of $V_{\rm SS}$ (TSSOP38, VQFN40)	I _{MVSS2} SF	-	260	mA	18)

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.

6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.

7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

 Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

9) An additional error current (I_{INI}) will flow if an overload current flows through an adjacent pin.

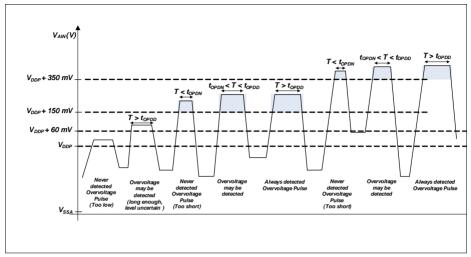

10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

Table 17	ADC Characteristics (Operating Conditions apply) ¹⁾ (cont'd)
----------	---

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.	-	
Gain settings	$G_{\sf IN} \sf CC$	1	-	1	-	GNCTRxz.GAINy=00 _B (unity gain)
		3			-	GNCTRxz.GAINy=01 _B (gain g1)
		6			-	GNCTRxz.GAINy=10 _B (gain g2)
		12			-	GNCTRxz.GAINy=11 _B (gain g3)
Sample Time	t _{sample} CC	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 3.3 V
		30	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20	-	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC	9	1		1 / <i>f</i> _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC	20			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} \mathrm{CC}$	-	-	f _{ADC} / 42.5	-	1 sample pending
		-	-	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	<i>f</i> _{C10} CC	-	-	f _{ADC} / 40.5	-	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC	16			1 / <i>f</i> _{ADC}	2)

Figure 13 ORC Detection Ranges

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min	Typ. ¹⁾	Max.		
Sleep mode current Peripherals clock disabled Flash active $f_{\rm MCLK}/f_{\rm PCLK}$ in MHz ⁵⁾	I _{DDPSD} CC	• -	1.8	-	mA	32 / 64
			1.7	-	mA	24 / 48
			1.6	-	mA	16 / 32
			1.5	-	mA	8 / 16
			1.4	-	mA	1/1
Sleep mode current Peripherals clock disabled Flash powered down f_{MCLK}/f_{PCLK} in MHz ⁶	I _{DDPSR} CC	_	1.2	-	mA	32 / 64
			1.1	-	mA	24 / 48
			1.0	-	mA	16 / 32
			0.8	-	mA	8 / 16
			0.7	-	mA	1/1
Deep Sleep mode current ⁷⁾	I _{DDPDS} CC	_	0.24	-	mA	
Wake-up time from Sleep to Active mode ⁸⁾	t _{SSA} CC	_	6	-	cycles	
Wake-up time from Deep Sleep to Active mode ⁹⁾	t _{DSA} CC	-	280	-	μsec	

Table 21 Power Supply Parameters; V_{DDP} = 5V

1) The typical values are measured at $T_A = +25 \text{ °C}$ and VDDP = 5 V.

2) CPU and all peripherals clock enabled, Flash is in active mode.

3) CPU enabled, all peripherals clock disabled, Flash is in active mode.

4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU in sleep, Flash is in active mode.

6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.

7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

8) CPU in sleep, Flash is in active mode during sleep mode.

9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample Freq.	Sampling Factor		Sample Clocks 1 _B		Remark
8 MHz	4	1 to 5	6 to 12	Time¹⁾ 0.69 μs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

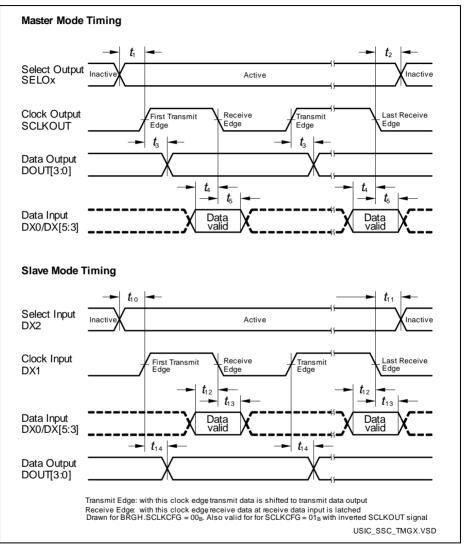


Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Quality Declaration

5 Quality Declaration

Table 36 shows the characteristics of the quality parameters in the XMC1300.

Table 36 Quality Parameters

Parameter	Symbol	Limit V	alues	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	$V_{\rm CDM}$ SR	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{ m SDR}$ SR	-	260	°C	Profile according to JEDEC J-STD-020D