

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-40-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302q040x0128abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 AB-Step

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet V1.9 2017-03

Microcontrollers

Summary of Features

• Configurable pad hysteresis

On-Chip Debug Support

- Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1300 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1300 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1300 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1301-T016F0008	PG-TSSOP-16-8	8	16
XMC1301-T016F0016	PG-TSSOP-16-8	16	16
XMC1301-T016F0032	PG-TSSOP-16-8	32	16
XMC1301-T016X0008	PG-TSSOP-16-8	8	16
XMC1301-T016X0016	PG-TSSOP-16-8	16	16
XMC1302-T016X0008	PG-TSSOP-16-8	8	16

Table 1 Synopsis of XMC1300 Device Types

Summary of Features

······································									
Derivative	Value	Marking							
XMC1302-Q040X0128	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083 _H	AB							
XMC1302-Q040X0200	00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083 _H	AB							

Table 4 XMC1300 Chip Identification Number (cont'd)

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT(standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	13	15	7	STD_IN OUT	
P0.1	24	18	-	-	-	STD_IN OUT	
P0.2	25	19	-	-	-	STD_IN OUT	
P0.3	26	20	-	-	-	STD_IN OUT	
P0.4	27	21	14	-	-	STD_IN OUT	
P0.5	28	22	15	16	8	STD_IN OUT	
P0.6	29	23	16	17	9	STD_IN OUT	

Table 6 Package Pin Mapping

General Device Information

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes			
P2.1	2	36	26	2	-	STD_IN OUT/AN				
P2.2	3	37	27	3	-	STD_IN/ AN				
P2.3	4	38	-	-	-	STD_IN/ AN				
P2.4	5	1	-	-	-	STD_IN/ AN				
P2.5	6	2	28	-	-	STD_IN/ AN				
P2.6	7	3	1	4	16	STD_IN/ AN				
P2.7	8	4	2	5	1	STD_IN/ AN				
P2.8	9	5	3	5	1	STD_IN/ AN				
P2.9	10	6	4	6	2	STD_IN/ AN				
P2.10	11	7	5	7	3	STD_IN OUT/AN				
P2.11	12	8	6	8	4	STD_IN OUT/AN				
VSS	13	9	7	9	5	Power	Supply GND, ADC reference GND			
VDD	14	10	8	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage			
VDDP	15	10	8	10	6	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.			

Table 6 Package Pin Mapping (cont'd)

General Device Information

2.2.3 Hardware Controlled I/O Function Description

The following general building block is used to describe the hardware I/O and pull control functions of each PORT pin:

Function	Outputs	Inputs	Pull Control	
	HWO0	HWIO	HW0_PD	HW0_PU
P0.0	MODB.OUT	MODB.INA		
Pn.y			MODC.OUT	MODC.OUT

Table 8 Hardware Controlled I/O Function Description

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Additional hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the peripherals can be used to control the pull devices of the pin.

Please refer to the **Hardware Controlled I/O Functions** table for the complete hardware I/O and pull control function mapping.

Table 9Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P2.6								ACMP1.I NN	VADC0. G0CH0		ERU0.2A 1	USIC0_C H0.DX3E	USIC0_C H0.DX4E	USIC0_C H1.DX5D	ORC4.AI N		
P2.7								ACMP1.I NP	VADC0. G1CH1		ERU0.3A 1	USIC0_C H0.DX5C	USIC0_C H1.DX3D	USIC0_C H1.DX4D	ORC5.AI N		
P2.8								ACMP0.I NN	VADC0. G0CH1	VADC0. G1CH0	ERU0.3B 1	USIC0_C H0.DX3D	USIC0_C H0.DX4D	USIC0_C H1.DX5C	ORC6.AI N		
P2.9								ACMP0.I NP	VADC0. G0CH2	VADC0. G1CH4	ERU0.3B 0	USIC0_C H0.DX5A	USIC0_C H1.DX3B	USIC0_C H1.DX4B	ORC7.AI N		
P2.10	ERU0. PDOUT1	CCU40. OUT2	ERU0. GOUT1		CCU80. OUT30	ACMP0. OUT	USIC0_C H1.DOUT 0		VADC0. G0CH3	VADC0. G1CH2	ERU0.2B 0	USIC0_C H0.DX3C	USIC0_C H0.DX4C	USIC0_C H1.DX0F			
P2.11	ERU0. PDOUT0	CCU40. OUT3	ERU0. GOUT0		CCU80. OUT31	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0	ACMP.RE F	VADC0. G0CH4	VADC0. G1CH3	ERU0.2B 1	USIC0_C H1.DX0E	USIC0_C H1.DX1E				

Infineon

Data Sheet

Figure 10 Input Overload Current via ESD structures

 Table 13 and Table 14 list input voltages that can be reached under overload conditions.

 Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

Table 13 PN-Junction Characterisitics for positive Overload

Pad Type	<i>I</i> _{ov} = 5 mA
Standard, High-current, AN/DIG_IN	$\begin{split} V_{\rm IN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AIN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AREF} &= V_{\rm DDP} + 0.5 \ V \end{split}$
P2.[1,2,6:9,11]	$V_{\rm INP2}$ = $V_{\rm DDP}$ + 0.3 V

Table 14 PN-Junction Characterisitics for negative Overload

Pad Type	<i>I</i> _{ov} = 5 mA
Standard, High-current, AN/DIG_IN	$\begin{split} V_{\rm IN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AIN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AREF} &= V_{\rm SS} - 0.5 \ {\rm V} \end{split}$
P2.[1,2,6:9,11]	$V_{\rm INP2}$ = $V_{\rm SS}$ - 0.3 V

Parameter	Symbol		Limit \	/alues	Unit	Test Conditions	
			Min.	Max.			
Input Hysteresis ⁸⁾	HYS	СС	$0.08 \times V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 \times V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 \times V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 \times V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 \times V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pin capacitance (digital inputs/outputs)	$C_{\rm IO}$	СС	-	10	pF		
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current9)	I _{OZP}	СС	-1	1	μA	$0 < V_{\rm IN} < V_{\rm DDP},$ $T_{\rm A} \le 105 \ ^{\circ}{ m C}$	
Voltage on any pin during $V_{\rm DDP}$ power off	V_{PO}	SR	-	0.3	V	10)	
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	
Maximum current into V_{DDP} (TSSOP16, VQFN24)	$I_{\rm MVDD1}$	SR	-	130	mA	18)	
Maximum current into V_{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	18)	

Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

3.2.2 Analog to Digital Converters (ADC)

Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	<u>۱</u>	/alues	;	Unit	Note / Test Condition	
		Min.	Тур.	Max.	-		
Supply voltage range (internal reference)	$V_{\rm DD_int}{ m SR}$	2.0	-	3.0	V	SHSCFG.AREF = 11_B CALCTR.CALGNSTC = $0C_H$	
		3.0	-	5.5	V	SHSCFG.AREF = 10_B	
Supply voltage range (external reference)	V_{DD_ext} SR	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{AIN}SR$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground	V_{REFGND} SR	V _{SSP} - 0.05	-	1.0	V	G0CH0	
		V _{SSP} - 0.05	-	0.2	V	G1CH0	
Internal reference voltage (full scale value)	V _{REFINT} CC	5			V		
Switched capacitance of an analog input	$C_{\rm AINS}{ m CC}$	-	1.2	2	pF	GNCTRxz.GAINy=00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy=01 _B (gain g1)	
		_	4.5	6	pF	GNCTRxz.GAINy=10 _B (gain g2)	
		_	4.5	6	pF	GNCTRxz.GAINy=11 _B (gain g3)	
Total capacitance of an analog input	C_{AINT} CC	-	-	10	pF		
Total capacitance of the reference input	C_{AREFT} CC	_	-	10	pF		

Table 17	ADC Characteristics	(Operating	Conditions	apply) ¹⁾
----------	---------------------	------------	------------	----------------------

Table 17	ADC Characteristics	Operating	Conditions	apply)1) (cont'd)
----------	---------------------	-----------	-------------------	-------------------

Parameter	rameter Symbol Values		;	Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Gain settings	$G_{\sf IN}{\sf CC}$	1			_	GNCTRxz.GAINy=00 _B (unity gain)
		3			_	GNCTRxz.GAINy=01 _B (gain g1)
		6			_	$GNCTRxz.GAINy = 10_B$ (gain g2)
		12			_	$GNCTRxz.GAINy = 11_B$ (gain g3)
Sample Time	$t_{\text{sample}} \operatorname{CC}$	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		3	-	-	1 / f _{ADC}	V _{DD} = 3.3 V
		30	-	-	1 / f _{ADC}	V _{DD} = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20 – –		μS	Residual charge stored in an active sigma delta loop remains available	
Conversion time in fast compare mode	t _{CF} CC	9	1	1	1 / <i>f</i> _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC	20			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} \mathrm{CC}$	_	-	f _{ADC} / 42.5	_	1 sample pending
		_	-	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	f _{C10} CC	_	-	f _{ADC} / 40.5	-	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC	16			1 / <i>f</i> _{ADC}	2)

Table 17 ADC Characteristics (Operating Conditions apply)¹⁾ (cont'd)

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending	
		-	-	f _{ADC} / 54.5	-	2 samples pending	
RMS noise ⁴⁾	EN _{RMS} CC	-	1.5	_	LSB 12	DC input, $V_{DD} = 5.0 \text{ V},$ $V_{AIN = 2.5 \text{ V}},$ 25°C	
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12		
INL error	EA _{INL} CC	-	±4.0	-	LSB 12		
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_B (calibrated)	
Gain error with internal reference 5)	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = $1X_B$ (calibrated), -40°C - 105°C	
		-	±2.0	-	%	SHSCFG.AREF = $1X_B$ (calibrated), 0°C - 85°C	
Offset error	EA _{OFF} CC	-	±8.0	-	mV	Calibrated, $V_{\rm DD}$ = 5.0 V	

1) The parameters are defined for ADC clock frequency f_{SH} = 32MHz, SHSCFG.DIVS = 0000_B. Usage of any other frequencies may affect the ADC performance.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

4) This parameter can also be defined as an SNR value: SNR[dB] = $20 \times \log(A_{MAXeff} / N_{RMS})$. With $A_{MAXeff} = 2^N / 2$, SNR[dB] = $20 \times \log (2048 / N_{RMS})$ [N = 12]. $N_{RMS} = 1.5$ LSB12, therefore, equals SNR = $20 \times \log (2048 / 1.5) = 62.7$ dB.

5) Includes error from the reference voltage.

3.3.2 Power-Up and Supply Monitoring Characteristics

Table 24 provides the characteristics of the power-up and supply monitoring inXMC1300.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while V_{DDP} is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Parameter	Symbol	V	alues		Unit	Note /
		Min.	Тур.	Max.		Test Condition
$V_{\rm DDP}$ ramp-up time	t _{RAMPUP} SR	$V_{ m DDP}/$ $S_{ m VDDPrise}$	_	10 ⁷	μs	
$V_{\sf DDP}$ slew rate	$S_{\rm VDDPOP}~{ m SR}$	0	_	0.1	V/µs	Slope during normal operation
	S _{VDDP10} SR	0	_	10	V/µs	Slope during fast transient within +/- 10% of V _{DDP}
	S _{VDDPrise} SR	0	_	10	V/µs	Slope during power-on or restart after brownout event
	$S_{\text{VDDPfall}}^{1)}$ SR	0	-	0.25	V/µs	Slope during supply falling out of the +/-10% limits ²⁾
V_{DDP} prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B

Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample	Sampling	Sample	Sample	Effective	Remark
Freq.	Factor	Clocks 0 _B	Clocks 1 _B	Decision	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

3.3.6 Peripheral Timings

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 29 USIC SSC Master Mode Timing

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
SCLKOUT master clock period	t _{CLK} CC	62.5	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	80	_	_	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	0	_	_	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	80	_	_	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	0	-	_	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Package and Reliability

4 Package and Reliability

The XMC1300 is a member of the XMC1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 35 provides the thermal characteristics of the packages used in XMC1300.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad	$E x \times E y$	-	2.7 imes 2.7	mm	PG-VQFN-24-19	
Dimensions	CC	-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance	$R_{\Theta JA}$ CC	-	104.6	K/W	PG-TSSOP-16-8 ¹⁾	
Junction-Ambient		-	83.2	K/W	PG-TSSOP-28-16 ¹⁾	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-13 ¹⁾	

 Table 35
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends

on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

XMC1300 AB-Step XMC1000 Family

Package and Reliability

Figure 29 PG-VQFN-24-19

www.infineon.com

Published by Infineon Technologies AG