

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302t038x0032abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

5 Quali	ty Declaration	1 7	77
---------	----------------	----------------	----

Summary of Features

- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
 - CORDIC unit for trigonometric calculation
 - division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters
 - up to 12 analog input pins
 - 2 sample and hold stages with 8 analog input channels each
 - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

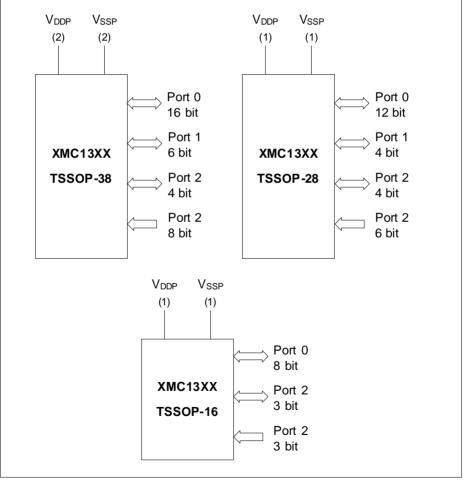
- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode



General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

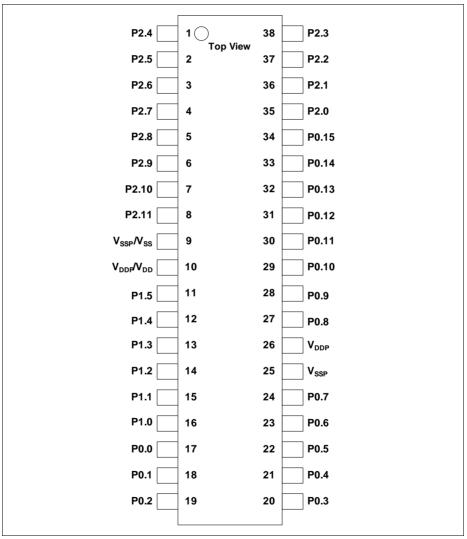


Figure 4 XMC1300 PG-TSSOP-38 Pin Configuration (top view)

XMC1300 AB-Step XMC1000 Family

General Device Information

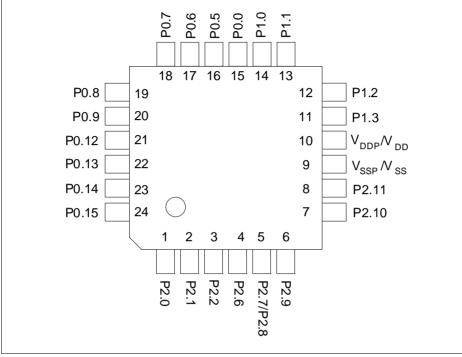


Figure 7 XMC1300 PG-VQFN-24 Pin Configuration (top view)

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT(standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
P0.0	23	17	13	15	7	STD_IN OUT	
P0.1	24	18	-	-	-	STD_IN OUT	
P0.2	25	19	-	-	-	STD_IN OUT	
P0.3	26	20	-	-	-	STD_IN OUT	
P0.4	27	21	14	-	-	STD_IN OUT	
P0.5	28	22	15	16	8	STD_IN OUT	
P0.6	29	23	16	17	9	STD_IN OUT	

Table 6 Package Pin Mapping

General Device Information

Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
VSSP	31	25	-	-	-	Power	I/O port ground
VDDP	32	26	-	-	-	Power	I/O port supply
VSSP	Exp. Pad	-	-	Exp. Pad	-	Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground For thermal aspects, please refer to the Package and Reliability chapter.

Table 6Package Pin Mapping (cont'd)

2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs				
	ALT1	ALTn	Input	Input			
P0.0		MODA.OUT	MODC.INA				
Pn.y	MODA.OUT		MODA.INA	MODC.INB			

Table 9 Port I/O Functions

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40. OUT0	CCU80. OUT00	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0	BCCU0. TRAPINB	CCU40. IN0C			USIC0_C H0.DX2A	USIC0_C H1.DX2A				
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP		CCU40. IN1C								
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02	CCU80. OUT10		CCU40. IN2C								
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11		CCU40. IN3C								
P0.4	BCCU0. OUT0			CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	WWDT. SERVICE _OUT		CCU80. IN0B								
P0.5	BCCU0. OUT1			CCU40. OUT0	CCU80. OUT12	ACMP2. OUT	CCU80. OUT01		CCU80. IN1B								
P0.6	BCCU0. OUT2			CCU40. OUT0	CCU80. OUT11	USIC0_C H1.MCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN0B			USIC0_C H1.DX0C					
P0.7	BCCU0. OUT3			CCU40. OUT1	CCU80. OUT10	USIC0_C H0.SCLK OUT	USIC0_C H1.DOUT 0		CCU40. IN1B				USIC0_C H1.DX0D				
P0.8	BCCU0. OUT4			CCU40. OUT2	CCU80. OUT20	USIC0_C H0.SCLK OUT	USIC0_C H1.SCLK OUT		CCU40. IN2B			USIC0_C H0.DX1B	USIC0_C H1.DX1B				
P0.9	BCCU0. OUT5			CCU40. OUT3	CCU80. OUT21	USIC0_C H0.SELO 0	USIC0_C H1.SELO 0		CCU40. IN3B			USIC0_C H0.DX2B	USIC0_C H1.DX2B				
P0.10	BCCU0. OUT6			ACMP0. OUT	CCU80. OUT22	USIC0_C H0.SELO 1	USIC0_C H1.SELO 1		CCU80. IN2B			USIC0_C H0.DX2C	USIC0_C H1.DX2C				
P0.11	BCCU0. OUT7			USIC0_C H0.MCLK OUT	CCU80. OUT23	USIC0_C H0.SELO 2	USIC0_C H1.SELO 2					USIC0_C H0.DX2D	USIC0_C H1.DX2D				
P0.12	BCCU0. OUT6				CCU80. OUT33	USIC0_C H0.SELO 3	CCU80. OUT20	BCCU0. TRAPINA	CCU40. IN0A	CCU40. IN1A	CCU40. IN2A	CCU40. IN3A	CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	USIC0_C H0.DX2E
P0.13	WWDT. SERVICE _OUT				CCU80. OUT32	USIC0_C H0.SELO 4	CCU80. OUT21		CCU80. IN3B	POSIF0. IN0B		USIC0_C H0.DX2F					

Infineon

Data Sheet

XMC1300 AB-Step XMC1000 Family

Table 9Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_C H0.DOUT 0				POSIF0. IN1B		USIC0_C H0.DX0A					
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_C H0.DOUT 0	USIC0_C H1.MCLK OUT			POSIF0. IN2B		USIC0_C H0.DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCU80. OUT00	ACMP1. OUT	USIC0_C H0.DOUT 0			POSIF0. IN2A		USIC0_C H0.DX0C					
P1.1	VADC0. EMUX00	CCU40. OUT1			CCU80. OUT01	USIC0_C H0.DOUT 0	USIC0_C H1.SELO 0			POSIF0. IN1A		USIC0_C H0.DX0D	USIC0_C H0.DX1D	USIC0_C H1.DX2E			
P1.2	VADC0. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	USIC0_C H1.DOUT 0			POSIF0. IN0A		USIC0_C H1.DX0B					
P1.3	VADC0. EMUX02	CCU40. OUT3			CCU80. OUT11	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0					USIC0_C H1.DX0A	USIC0_C H1.DX1A				
P1.4	VADC0. EMUX10	USIC0_C H1.SCLK OUT			CCU80. OUT20	USIC0_C H0.SELO 0	USIC0_C H1.SELO 1					USIC0_C H0.DX5E	USIC0_C H1.DX5E				
P1.5	VADC0. EMUX11	USIC0_C H0.DOUT 0		BCCU0. OUT1	CCU80. OUT21	USIC0_C H0.SELO 1	USIC0_C H1.SELO 2					USIC0_C H1.DX5F					
P1.6	VADC0. EMUX12	USIC0_C H1.DOUT 0		USIC0_C H0.SCLK OUT	BCCU0. OUT2	USIC0_C H0.SELO 2	USIC0_C H1.SELO 3			USIC0_C H0.DX5F							
P2.0	ERU0. PDOUT3	CCU40. OUT0	ERU0. GOUT3		CCU80. OUT20	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT		VADC0. G0CH5		ERU0.0B 0	USIC0_C H0.DX0E	USIC0_C H0.DX1E	USIC0_C H1.DX2F			
P2.1	ERU0. PDOUT2	CCU40. OUT1	ERU0. GOUT2		CCU80. OUT21	USIC0_C H0.DOUT 0	USIC0_C H1.SCLK OUT	ACMP2.I NP	VADC0. G0CH6		ERU0.1B 0	USIC0_C H0.DX0F	USIC0_C H1.DX3A	USIC0_C H1.DX4A			
P2.2								ACMP2.I NN	VADC0. G0CH7		ERU0.0B	USIC0_C H0.DX3A	USIC0_C H0.DX4A	USIC0_C H1.DX5A	ORC0.AI		
P2.3		1							VADC0. G1CH5					USIC0_C H1.DX4C			
P2.4									VADC0. G1CH6		ERU0.0A 1	USIC0_C H0.DX3B	USIC0_C H0.DX4B	USIC0_C H1.DX5B	ORC2.AI N		
P2.5									VADC0. G1CH7		ERU0.1A 1	USIC0_C H0.DX5D	USIC0_C H1.DX3E	USIC0_C H1.DX4E	ORC3.AI N		

Infineon

XMC1300 AB-Step XMC1000 Family

Data Sheet

Table 10 Hardware Controlled I/O Functions

Function	Outputs		Inputs		Pull Control					
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0										
P0.1										
P0.2										
P0.3										
P0.4										
P0.5										
P0.6										
P0.7										
P0.8										
P0.9										
P0.10										
P0.11										
P0.12										
P0.13										
P0.14										
P0.15										
P1.0		USIC0_CH0.DOUT0		USIC0_CH0.HWIN0	BCCU0.OUT2	BCCU0.OUT2				
P1.1		USIC0_CH0.DOUT1		USIC0_CH0.HWIN1	BCCU0.OUT3	BCCU0.OUT3				
P1.2		USIC0_CH0.DOUT2		USIC0_CH0.HWIN2	BCCU0.OUT4	BCCU0.OUT4				
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5				
P1.4					BCCU0.OUT6	BCCU0.OUT6				
P1.5					BCCU0.OUT7	BCCU0.OUT7				
P1.6					BCCU0.OUT8	BCCU0.OUT8				
P2.0					BCCU0.OUT1	BCCU0.OUT1				
2.1					BCCU0.OUT6	BCCU0.OUT6				
2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3		
P2.3					ACMP2.OUT	ACMP2.OUT				
P2.4					BCCU0.OUT8	BCCU0.OUT8				
P2.5					ACMP1.OUT	ACMP1.OUT				

XMC1300 AB-Step XMC1000 Family

Data Sheet

Table 17 ADC Characteristics (Operating Conditions apply)¹⁾ (cont'd)

Parameter	Symbol	١	/alues	5	Unit	Note / Test Condition		
		Min.	Тур.	Max.	1			
Maximum sample rate in 8-bit mode ³⁾	f_{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending		
		-	-	f _{ADC} / 54.5	-	2 samples pending		
RMS noise ⁴⁾	<i>EN</i> _{RMS} CC	-	1.5	_	LSB 12	DC input, $V_{DD} = 5.0 \text{ V},$ $V_{AIN = 2.5 \text{ V}},$ 25°C		
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12			
INL error	EA _{INL} CC	-	±4.0	-	LSB 12			
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_B (calibrated)		
Gain error with internal reference ⁵⁾	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C		
		-	±2.0	-	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C		
Offset error	EA _{OFF} CC	-	±8.0	-	mV	Calibrated, $V_{\rm DD}$ = 5.0 V		

1) The parameters are defined for ADC clock frequency f_{SH} = 32MHz, SHSCFG.DIVS = 0000_B. Usage of any other frequencies may affect the ADC performance.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

4) This parameter can also be defined as an SNR value: SNR[dB] = $20 \times \log(A_{MAXeff} / N_{RMS})$. With $A_{MAXeff} = 2^N / 2$, SNR[dB] = $20 \times \log (2048 / N_{RMS})$ [N = 12]. $N_{RMS} = 1.5$ LSB12, therefore, equals SNR = $20 \times \log (2048 / 1.5) = 62.7$ dB.

5) Includes error from the reference voltage.

3.2.3 Out of Range Comparator (ORC) Characteristics

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the V_{DDP} on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symb	ol		Value	5	Unit	Note / Test Condition
			Min.	Тур.	Max.		
DC Switching Level	V_{ODC}	CC	54	_	183	mV	$VAIN \ge V_{DDP} + V_{ODC}$
Hysteresis	$V_{\rm OHYS}$	СС	15	_	54	mV	
Always detected	t _{OPDD}	СС	103	_	-	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV
Overvoltage Pulse			88	_	-	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 350 mV
Never detected	t _{OPDN}	СС	-	-	21	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV
Overvoltage Pulse			-	_	11	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 350 mV
Detection Delay of a	t _{ODD}	CC	39	_	132	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV
persistent Overvoltage			31	-	121	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 350 mV
Release Delay	t _{ORD}	CC	44	-	240	ns	$V_{\text{AIN}} \leq V_{\text{DDP}}; V_{\text{DDP}} = 5 \text{ V}$
			57	-	340	ns	$V_{\text{AIN}} \le V_{\text{DDP}}; V_{\text{DDP}} = 3.3$
Enable Delay	t _{OED}	CC	-	-	300	ns	ORCCTRL.ENORCx =

Table 18Out of Range Comparator (ORC) Characteristics (Operating
Conditions apply; V_{DDP} = 3.0 V - 5.5 V; C₁ = 0.25 pF)

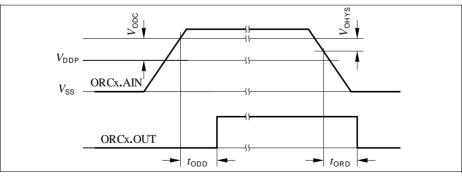


Figure 12 ORCx.OUT Trigger Generation

3.2.4 Analog Comparator Characteristics

Table 19 below shows the Analog Comparator characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19	Analog Comparator Characteristics (Operating Conditions apply)
----------	--

Parameter	Symbol		Li	mit Val	ues	Unit	Notes/ Test Conditions	
			Min.	Тур.	Max.			
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V		
Input Offset	V_{CMPOFF}	CC	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV	
			-	+/-20	-	mV	Low power mode $\Delta V_{\rm CMP}$ < 200 mV	
Propagation Delay ¹⁾	t _{PDELAY}	CC	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV	
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	700	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 25 mV	
Current Consumption	I _{ACMP}	CC	_	100	-	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV	
			-	66	_	μA	Each additional ACMP in high power mode, ΔV_{CMP} > 30 mV	
			-	10	-	μA	First active ACMP in low power mode	
			-	6	-	μA	Each additional ACMP in low power mode	
Input Hysteresis	$V_{\rm HYS}$	СС	-	+/-15	-	mV		
Filter Delay ¹⁾	t _{FDELAY}	CC	-	5	-	ns		

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

3.3.2 Power-Up and Supply Monitoring Characteristics

Table 24 provides the characteristics of the power-up and supply monitoring inXMC1300.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while V_{DDP} is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Parameter	Symbol	V	/alues		Unit	Note / Test Condition
		Min.	Тур.	Max.		
V_{DDP} ramp-up time	<i>t</i> _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS	
$V_{\rm DDP}$ slew rate	$S_{\rm VDDPOP} \ {\sf SR}$	0	-	0.1	V/µs	Slope during normal operation
	S _{VDDP10} SR	0	-	10	V/µs	Slope during fast transient within +/- 10% of V _{DDP}
	$S_{\rm VDDPrise}~{ m SR}$	0	-	10	V/µs	Slope during power-on or restart after brownout event
	$S_{\text{VDDPfall}}^{(1)}$ SR	0	-	0.25	V/µs	Slope during supply falling out of the +/-10% limits ²⁾
$V_{ m DDP}$ prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B

Table 24 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 24	Power-Up and Supply Monitoring Parameters (Operating Conditions
	apply) (cont'd)

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
V_{DDP} brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
Start-up time from power-on reset	t _{SSW} SR	_	320	-	μs	Time to the first user code instruction ³⁾
BMI program time	t _{BMI} SR	-	8.25	-	ms	Time taken from a user-triggered system reset after BMI installation is is requested

1) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter.

2) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.

3) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

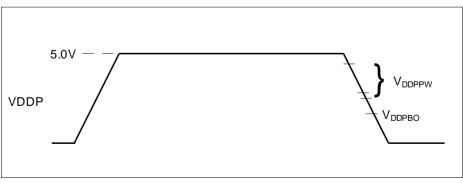


Figure 19 Supply Threshold Parameters

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample Freq.	Sampling Factor		Sample Clocks 1 _B		Remark
8 MHz	4	1 to 5	6 to 12	Time¹⁾ 0.69 μs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

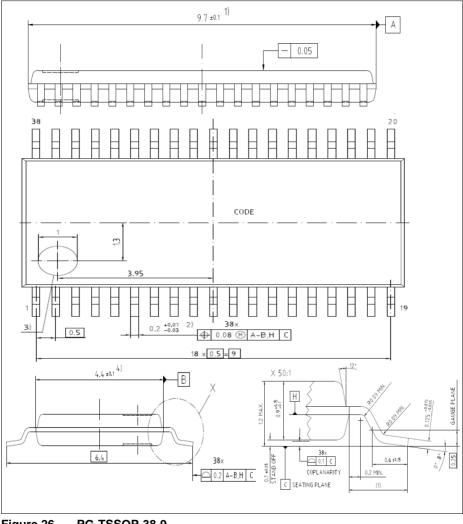
- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 31	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------


Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Package and Reliability

4.2 **Package Outlines**

XMC1300 AB-Step XMC1000 Family

Package and Reliability

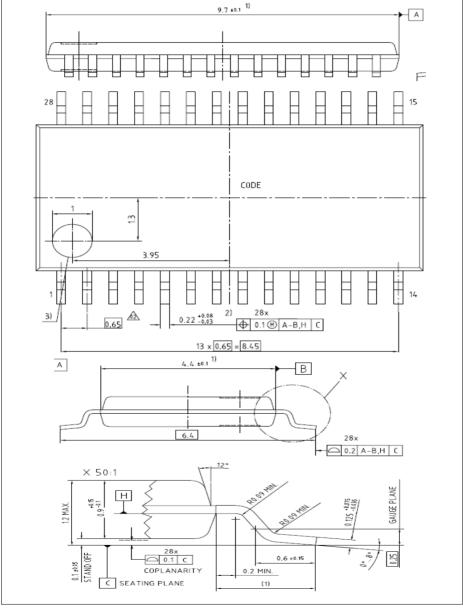
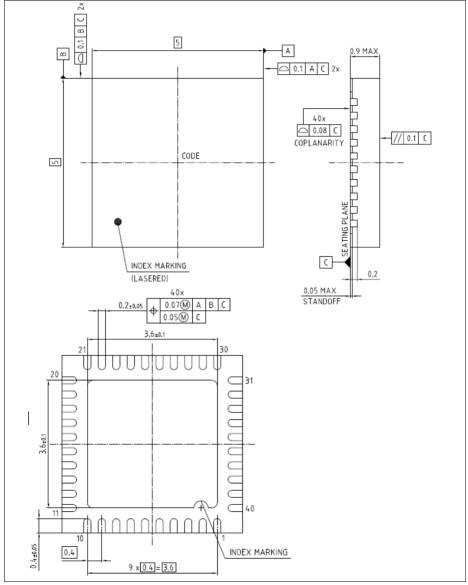



Figure 27 PG-TSSOP-28-16

XMC1300 AB-Step XMC1000 Family

Package and Reliability

Figure 30 PG-VQFN-40-13

All dimensions in mm.