

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302t038x0128abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 AB-Step

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM[®] Cortex[®]-M0 32-bit processor core

Data Sheet V1.9 2017-03

Microcontrollers

Summary of Features

1 Summary of Features

The XMC1300 devices are members of the XMC1000 Family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1300 series addresses the real-time control needs of motor control, digital power conversion. It also features peripherals for LED Lighting applications.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High-performance 32-bit ARM Cortex-M0 CPU
 - Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set
 - Single cycle 32-bit hardware multiplier
 - System timer (SysTick) for Operating System support

Summary of Features

- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- · Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
 - CORDIC unit for trigonometric calculation
 - division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters
 - up to 12 analog input pins
 - 2 sample and hold stages with 8 analog input channels each
 - fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC1300 PG-TSSOP-38 Pin Configuration (top view)

				()			
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
VSSP	31	25	-	-	-	Power	I/O port ground
VDDP	32	26	-	-	-	Power	I/O port supply
VSSP	Exp. Pad	-	-	Exp. Pad	-	Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter.

Table 6Package Pin Mapping (cont'd)

2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs	Inputs			
	ALT1	ALTn	Input	Input			
P0.0		MODA.OUT	MODC.INA				
Pn.y	MODA.OUT		MODA.INA	MODC.INB			

Figure 9 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

Please refer to the **Port I/O Functions** table for the complete Port I/O function mapping.

Table 9Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT			POSIF0. IN1B		USIC0_C H0.DX0A	USIC0_C H0.DX1A				
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_C H0.DOUT 0	USIC0_C H1.MCLK OUT			POSIF0. IN2B		USIC0_C H0.DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCU80. OUT00	ACMP1. OUT	USIC0_C H0.DOUT 0			POSIF0. IN2A		USIC0_C H0.DX0C					
P1.1	VADC0. EMUX00	CCU40. OUT1			CCU80. OUT01	USIC0_C H0.DOUT 0	USIC0_C H1.SELO 0			POSIF0. IN1A		USIC0_C H0.DX0D	USIC0_C H0.DX1D	USIC0_C H1.DX2E			
P1.2	VADC0. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	USIC0_C H1.DOUT 0			POSIF0. IN0A		USIC0_C H1.DX0B					
P1.3	VADC0. EMUX02	CCU40. OUT3			CCU80. OUT11	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0					USIC0_C H1.DX0A	USIC0_C H1.DX1A				
P1.4	VADC0. EMUX10	USIC0_C H1.SCLK OUT			CCU80. OUT20	USIC0_C H0.SELO 0	USIC0_C H1.SELO 1					USIC0_C H0.DX5E	USIC0_C H1.DX5E				
P1.5	VADC0. EMUX11	USIC0_C H0.DOUT 0		BCCU0. OUT1	CCU80. OUT21	USIC0_C H0.SELO 1	USIC0_C H1.SELO 2					USIC0_C H1.DX5F					
P1.6	VADC0. EMUX12	USIC0_C H1.DOUT 0		USIC0_C H0.SCLK OUT	BCCU0. OUT2	USIC0_C H0.SELO 2	USIC0_C H1.SELO 3			USIC0_C H0.DX5F							
P2.0	ERU0. PDOUT3	CCU40. OUT0	ERU0. GOUT3		CCU80. OUT20	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT		VADC0. G0CH5		ERU0.0B 0	USIC0_C H0.DX0E	USIC0_C H0.DX1E	USIC0_C H1.DX2F			
P2.1	ERU0. PDOUT2	CCU40. OUT1	ERU0. GOUT2		CCU80. OUT21	USIC0_C H0.DOUT 0	USIC0_C H1.SCLK OUT	ACMP2.I NP	VADC0. G0CH6		ERU0.1B 0	USIC0_C H0.DX0F	USIC0_C H1.DX3A	USIC0_C H1.DX4A			
P2.2								ACMP2.I NN	VADC0. G0CH7		ERU0.0B 1	USIC0_C H0.DX3A	USIC0_C H0.DX4A	USIC0_C H1.DX5A	ORC0.AI N		
P2.3									VADC0. G1CH5		ERU0.1B 1	USIC0_C H0.DX5B	USIC0_C H1.DX3C	USIC0_C H1.DX4C	ORC1.AI N		
P2.4									VADC0. G1CH6		ERU0.0A 1	USIC0_C H0.DX3B	USIC0_C H0.DX4B	USIC0_C H1.DX5B	ORC2.AI N		
P2.5									VADC0. G1CH7		ERU0.1A 1	USIC0_C H0.DX5D	USIC0_C H1.DX3E	USIC0_C H1.DX4E	ORC3.AI N		

Infineon

XMC1300 AB-Step XMC1000 Family

Data Sheet

Table 10 Hardware Controlled I/O Functions

Function	Outputs		Inputs		Pull Control					
	HWO0	HWO1	ншо	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0										
P0.1										
P0.2										
P0.3										
P0.4										
P0.5										
P0.6										
P0.7										
P0.8										
P0.9										
P0.10										
P0.11										
P0.12										
P0.13										
P0.14										
P0.15										
P1.0		USIC0_CH0.DOUT0		USIC0_CH0.HWIN0	BCCU0.OUT2	BCCU0.OUT2				
P1.1		USIC0_CH0.DOUT1		USIC0_CH0.HWIN1	BCCU0.OUT3	BCCU0.OUT3				
P1.2		USIC0_CH0.DOUT2		USIC0_CH0.HWIN2	BCCU0.OUT4	BCCU0.OUT4				
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5				
P1.4					BCCU0.OUT6	BCCU0.OUT6				
P1.5					BCCU0.OUT7	BCCU0.OUT7				
P1.6					BCCU0.OUT8	BCCU0.OUT8				
P2.0					BCCU0.OUT1	BCCU0.OUT1				
P2.1					BCCU0.OUT6	BCCU0.OUT6				
P2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3		
P2.3					ACMP2.OUT	ACMP2.OUT				
P2.4					BCCU0.OUT8	BCCU0.OUT8				
P2.5					ACMP1.OUT	ACMP1.OUT				

XMC1300 AB-Step XMC1000 Family

Data Sheet

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC1300 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /
			Min	Тур.	Max.		Test Cond ition
Junction temperature	T_{J}	SR	-40	-	115	°C	-
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-
Voltage on digital pins with respect to $V_{\rm SSP}{}^{1)}$	V_{IN}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on P2 pins with respect to $V_{\rm SSP}^{2)}$	V_{INP2}	SR	-0.3	-	V _{DDP} + 0.3	V	-
Voltage on analog input pins with respect to $V_{\rm SSP}$	$V_{AIN} \ V_{AREF}$	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute maximum sum of all input currents during overload condition	ΣI _{IN}	SR	-50	-	+50	mA	_

Table 11	Absolute	Maximum	Rating	Parameters
	710001010	maximani	nanng	i urumotoro

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

Figure 10 Input Overload Current via ESD structures

 Table 13 and Table 14 list input voltages that can be reached under overload conditions.

 Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

Table 13 PN-Junction Characterisitics for positive Overload

Pad Type	<i>I</i> _{ov} = 5 mA
Standard, High-current, AN/DIG_IN	$\begin{split} V_{\rm IN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AIN} &= V_{\rm DDP} + 0.5 \ V \\ V_{\rm AREF} &= V_{\rm DDP} + 0.5 \ V \end{split}$
P2.[1,2,6:9,11]	$V_{\rm INP2}$ = $V_{\rm DDP}$ + 0.3 V

Table 14 PN-Junction Characterisitics for negative Overload

Pad Type	<i>I</i> _{ov} = 5 mA
Standard, High-current, AN/DIG_IN	$\begin{split} V_{\rm IN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AIN} &= V_{\rm SS} - 0.5 \ {\rm V} \\ V_{\rm AREF} &= V_{\rm SS} - 0.5 \ {\rm V} \end{split}$
P2.[1,2,6:9,11]	$V_{\rm INP2}$ = $V_{\rm SS}$ - 0.3 V

3.2.2 Analog to Digital Converters (ADC)

Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	<u>۱</u>	/alues	;	Unit	Note / Test Condition	
		Min.	Тур.	Max.	-		
Supply voltage range (internal reference)	$V_{\rm DD_int}{ m SR}$	2.0	-	3.0	V	SHSCFG.AREF = 11_B CALCTR.CALGNSTC = $0C_H$	
		3.0	-	5.5	V	SHSCFG.AREF = 10_B	
Supply voltage range (external reference)	V_{DD_ext} SR	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{AIN}SR$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground	V_{REFGND} SR	V _{SSP} - 0.05	-	1.0	V	G0CH0	
		V _{SSP} - 0.05	-	0.2	V	G1CH0	
Internal reference voltage (full scale value)	V _{REFINT} CC	5			V		
Switched capacitance of an analog input	$C_{\rm AINS}{ m CC}$	-	1.2	2	pF	GNCTRxz.GAINy=00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy=01 _B (gain g1)	
		_	4.5	6	pF	GNCTRxz.GAINy=10 _B (gain g2)	
		_	4.5	6	pF	GNCTRxz.GAINy=11 _B (gain g3)	
Total capacitance of an analog input	C_{AINT} CC	-	-	10	pF		
Total capacitance of the reference input	C_{AREFT} CC	_	-	10	pF		

Table 17	ADC Characteristics	(Operating	Conditions	apply) ¹⁾
----------	---------------------	------------	------------	----------------------

Table 17	ADC Characteristics	Operating	Conditions	apply)1) (cont'd)
----------	---------------------	-----------	-------------------	-------------------

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Gain settings	$G_{\sf IN}{\sf CC}$	1			_	GNCTRxz.GAINy=00 _B (unity gain)
		3			_	GNCTRxz.GAINy=01 _B (gain g1)
		6			_	$GNCTRxz.GAINy = 10_B$ (gain g2)
		12			_	$GNCTRxz.GAINy = 11_B$ (gain g3)
Sample Time	$t_{\text{sample}} \operatorname{CC}$	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		3	-	-	1 / f _{ADC}	V _{DD} = 3.3 V
		30	-	-	1 / f _{ADC}	V _{DD} = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20	-	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC	9	1	1	1 / <i>f</i> _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC	20			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} CC$	_	-	f _{ADC} / 42.5	-	1 sample pending
		_	-	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	f _{C10} CC	_	-	f _{ADC} / 40.5	-	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC	16			1 / <i>f</i> _{ADC}	2)

Figure 13 ORC Detection Ranges

Table 22 provides the active current consumption of some modules operating at 5 V power supply at 25° C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition		
		Тур.				
Baseload current	ICPUDDC	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ¹⁾		
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ²⁾		
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 1 ³⁾		
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁴⁾		
CCU80	I _{CCU80DDC}	0.42	mA	Set CGATCLR0.CCU80 to 1 ⁵⁾		
POSIF0	I _{PIF0DDC}	0.26	mA	Set CGATCLR0.POSIF0 to 16)		
BCCU0	I _{BCCU0DDC}	0.24	mA	Set CGATCLR0.BCCU0 to 17)		
MATH	I _{MATHDDC}	0.35	mA	Set CGATCLR0.MATH to 18)		
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 19)		
RTC	$I_{\rm RTCDDC}$	0.01	mA	Set CGATCLR0.RTC to 1 ¹⁰⁾		

Table 22 Typical Active Current Consumption

1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle

- Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU8 slice with PWM frequency at 1500Hz and a period match interrupt used to toggle duty cycle between 10% and 90%
- 6) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, hall sensor mode
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, tangent calculation in while loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11
- Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s
- 10) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.3.4 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 27	SWD Interface	Timing Parameters	Operating	Conditions	apply)
Table 27	SWD Interface	Timing Parameters	Operating	Conditions	app

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
SWDCLK high time	t1 SR	50	-	500000	ns	-
SWDCLK low time	$t_2 \mathrm{SR}$	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	<i>t</i> 3 SR	10	-	_	ns	-
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	_
SWDIO output valid time	t ₅ CC	-	-	68	ns	$C_L = 50 \text{ pF}$
after SWDCLK rising edge		-	-	62	ns	$C_L = 30 \text{ pF}$
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns	

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample	Sampling	Sample	Sample	Effective	Remark
Freq.	Factor	Clocks 0 _B	Clocks 1 _B	Decision	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

www.infineon.com

Published by Infineon Technologies AG