

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	200KB (200K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302t038x0200abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2017-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table of Contents

5 Quali	ty Declaration	1 7	77
---------	----------------	-----	----

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.

The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

XMC1300 AB-Step XMC1000 Family

General Device Information

General Device Information

l aple o												
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes					
P0.7	30	24	17	18	10	STD_IN OUT						
P0.8	33	27	18	19	11	STD_IN OUT						
P0.9	34	28	19	20	12	STD_IN OUT						
P0.10	35	29	20	-	-	STD_IN OUT						
P0.11	36	30	-	-	-	STD_IN OUT						
P0.12	37	31	21	21	-	STD_IN OUT						
P0.13	38	32	22	22	-	STD_IN OUT						
P0.14	39	33	23	23	13	STD_IN OUT						
P0.15	40	34	24	24	14	STD_IN OUT						
P1.0	22	16	12	14	-	High Current						
P1.1	21	15	11	13	-	High Current						
P1.2	20	14	10	12	-	High Current						
P1.3	19	13	9	11	-	High Current						
P1.4	18	12	-	-	-	High Current						
P1.5	17	11	-	-	-	High Current						
P1.6	16	-	-	-	-	STD_IN OUT						
P2.0	1	35	25	1	15	STD_IN OUT/AN						

Table 6 Package Pin Mapping (cont'd)

Table 9Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT			POSIF0. IN1B		USIC0_C H0.DX0A	USIC0_C H0.DX1A				
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_C H0.DOUT 0	USIC0_C H1.MCLK OUT			POSIF0. IN2B		USIC0_C H0.DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCU80. OUT00	ACMP1. OUT	USIC0_C H0.DOUT 0			POSIF0. IN2A		USIC0_C H0.DX0C					
P1.1	VADC0. EMUX00	CCU40. OUT1			CCU80. OUT01	USIC0_C H0.DOUT 0	USIC0_C H1.SELO 0			POSIF0. IN1A		USIC0_C H0.DX0D	USIC0_C H0.DX1D	USIC0_C H1.DX2E			
P1.2	VADC0. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	USIC0_C H1.DOUT 0			POSIF0. IN0A		USIC0_C H1.DX0B					
P1.3	VADC0. EMUX02	CCU40. OUT3			CCU80. OUT11	USIC0_C H1.SCLK OUT	USIC0_C H1.DOUT 0					USIC0_C H1.DX0A	USIC0_C H1.DX1A				
P1.4	VADC0. EMUX10	USIC0_C H1.SCLK OUT			CCU80. OUT20	USIC0_C H0.SELO 0	USIC0_C H1.SELO 1					USIC0_C H0.DX5E	USIC0_C H1.DX5E				
P1.5	VADC0. EMUX11	USIC0_C H0.DOUT 0		BCCU0. OUT1	CCU80. OUT21	USIC0_C H0.SELO 1	USIC0_C H1.SELO 2					USIC0_C H1.DX5F					
P1.6	VADC0. EMUX12	USIC0_C H1.DOUT 0		USIC0_C H0.SCLK OUT	BCCU0. OUT2	USIC0_C H0.SELO 2	USIC0_C H1.SELO 3			USIC0_C H0.DX5F							
P2.0	ERU0. PDOUT3	CCU40. OUT0	ERU0. GOUT3		CCU80. OUT20	USIC0_C H0.DOUT 0	USIC0_C H0.SCLK OUT		VADC0. G0CH5		ERU0.0B 0	USIC0_C H0.DX0E	USIC0_C H0.DX1E	USIC0_C H1.DX2F			
P2.1	ERU0. PDOUT2	CCU40. OUT1	ERU0. GOUT2		CCU80. OUT21	USIC0_C H0.DOUT 0	USIC0_C H1.SCLK OUT	ACMP2.I NP	VADC0. G0CH6		ERU0.1B 0	USIC0_C H0.DX0F	USIC0_C H1.DX3A	USIC0_C H1.DX4A			
P2.2								ACMP2.I NN	VADC0. G0CH7		ERU0.0B 1	USIC0_C H0.DX3A	USIC0_C H0.DX4A	USIC0_C H1.DX5A	ORC0.AI N		
P2.3									VADC0. G1CH5		ERU0.1B 1	USIC0_C H0.DX5B	USIC0_C H1.DX3C	USIC0_C H1.DX4C	ORC1.AI N		
P2.4									VADC0. G1CH6		ERU0.0A 1	USIC0_C H0.DX3B	USIC0_C H0.DX4B	USIC0_C H1.DX5B	ORC2.AI N		
P2.5									VADC0. G1CH7		ERU0.1A 1	USIC0_C H0.DX5D	USIC0_C H1.DX3E	USIC0_C H1.DX4E	ORC3.AI N		

Infineon

XMC1300 AB-Step XMC1000 Family

Data Sheet

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min	Тур.	Max.		Test Cond ition	
Junction temperature	T_{J}	SR	-40	-	115	°C	-	
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-	
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-	
Voltage on digital pins with respect to $V_{\rm SSP}{}^{1)}$	V_{IN}	SR	-0.5	-	V _{DDP} + 0.5 or max. 6	V	whichever is lower	
Voltage on P2 pins with respect to $V_{\rm SSP}^{2)}$	V_{INP2}	SR	-0.3	-	V _{DDP} + 0.3	V	-	
Voltage on analog input pins with respect to $V_{\rm SSP}$	$V_{AIN} \ V_{AREF}$	SR	-0.5	-	V _{DDP} + 0.5 or max. 6	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-	
Absolute maximum sum of all input currents during overload condition	ΣI _{IN}	SR	-50	-	+50	mA	_	

Table 11	Absolute	Maximum	Rating	Parameters
	710001010	maximani	nanng	i urumotoro

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Sym	bol		Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	25	mA	

Table 12 Overload Parameters

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Table 17	ADC Characteristics	Operating	Conditions	apply)1) (cont'd)
----------	---------------------	-----------	-------------------	-------------------

Parameter	Symbol	\ \	/alues	;	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Gain settings	$G_{\sf IN}{\sf CC}$	1			_	GNCTRxz.GAINy=00 _B (unity gain)
		3			_	GNCTRxz.GAINy=01 _B (gain g1)
		6			_	$GNCTRxz.GAINy = 10_B$ (gain g2)
		12			_	GNCTRxz.GAINy=11 _B (gain g3)
Sample Time	$t_{\text{sample}} \operatorname{CC}$	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		3	-	-	1 / f _{ADC}	V _{DD} = 3.3 V
		30	-	-	1 / f _{ADC}	V _{DD} = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20	-	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC	9	1	1	1 / <i>f</i> _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC	20			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} CC$	_	-	f _{ADC} / 42.5	-	1 sample pending
		_	-	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC	18			1 / <i>f</i> _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	f _{C10} CC	_	-	f _{ADC} / 40.5	-	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC	16			1 / <i>f</i> _{ADC}	2)

Figure 13 ORC Detection Ranges

3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note /			
		Min.	Тур.	Max.		Test Condition			
Measurement time	t _M CC	_	_	10	ms				
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C				
Sensor Accuracy ¹⁾	$T_{\text{TSAL}} \operatorname{CC}$	-6	-	6	°C	$T_{\rm J}$ > 20°C			
		-10	-	10	°C	$0^{\circ}\mathrm{C} \leq T_{\mathrm{J}} \leq 20^{\circ}\mathrm{C}$			
		-	-/+8	-	°C	$T_{\rm J} < 0^{\circ}{\rm C}$			
Start-up time after enabling	t _{TSSTE} SR	_	-	15	μS				

Table 20 Temperature Sensor Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

Figure 15 shows typical graphs for sleep mode current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

Figure 15 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I_{DDPSR} over supply voltage V_{DDP for different clock frequencies}

53

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note /	
		Min.	Тур.	Max.	-	Test Condition	
Erase Time per page / sector	t _{ERASE} CC	6.8	7.1	7.6	ms		
Program time per block	t _{PSER} CC	102	152	204	μs		
Wake-Up time	t _{WU} CC	-	32.2	-	μs		
Read time per word	t _a CC	-	50	-	ns		
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles	
Flash Wait States 1)	N _{WSFLASH} CC	0	0	0		$f_{\rm MCLK} = 8 \rm MHz$	
		0	1	1		$f_{\rm MCLK} = 16 \rm MHz$	
		1	1.3	2		$f_{\rm MCLK} = 32 \rm MHz$	
Fixed Flash Wait States configured in bit	N _{FWSFLASH} SR	0	0	1		NVM_CONFIG1.FI XWS = 1_B , $f_{MCLK} \le 16$ MHz	
NVM_NVMCONF.WS		1	1	1		NVM_CONFIG1.FI XWS = 1_B , $16 \text{ MHz} < f_{MCLK} \le$ 32 MHz	
Erase Cycles	N _{ECYC} CC	-	-	5*10 ⁴	cycles	Sum of page and sector erase cycles	
Total Erase Cycles	$N_{\text{TECYC}} \operatorname{CC}$	-	-	2*10 ⁶	cycles		

Table 23 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

Figure 20 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively.

Figure 20 Typical DCO1 accuracy over temperature

Table 26 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1300.

Parameter	Sym	Symbol		nit Valu	ies	Unit	Test Conditions				
			Min.	Тур.	Max.						
Nominal frequency	f _{nom}	СС	-	32.75	-	kHz	under nominal conditions ¹⁾ after trimming				
Accuracy	Δf_{LT}	CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C)				
			-3.9	-	4.0	%	with respect to $f_{\rm NOM}$ (typ), over temperature (-40 °C to 105 °C)				

Table 26 32 kHz DCO2 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample	Sampling	Sample	Sample	Effective	Remark
Freq.	Factor	Clocks 0 _B	Clocks 1 _B	Decision	
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.

Table 28 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

62

3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 31	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Package and Reliability

4.2 **Package Outlines**

XMC1300 AB-Step XMC1000 Family

Package and Reliability

Figure 29 PG-VQFN-24-19

www.infineon.com

Published by Infineon Technologies AG