

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	•
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-125-bnd

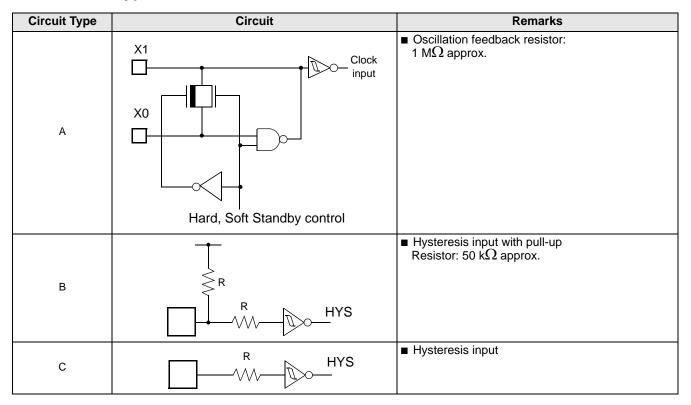
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

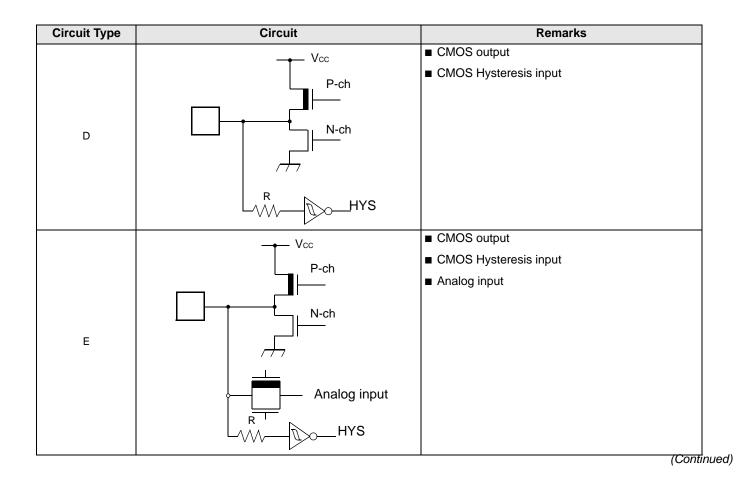
Contents

Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	14
Memory Space	
I/O Map	
Can Controller	
List of Control Registers	23
List of Message Buffers (ID Registers)	
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

Electrical Characteristics	31
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	45
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	



Pin no.	Pin name	Circuit type	Function		
20	P50	D	General purpose IO		
28	SIN2	D	SIN Input for the Serial IO		
29 to 32	P51 to P54	D	General purpose IO		
291032	INT4 to INT7	D	External interrupt input for INT4 to INT7		
33	P55	D	General purpose IO		
	ADTG	ם	Input for the external trigger of the A/D Converter		
38 to 41	P60 to P63	E	General purpose IO		
30 10 41	AN0 to AN3	L	Inputs for the A/D Converter		
43 to 46	P64 to P67	E	General purpose IO		
43 10 40	AN4 to AN7	L	Inputs for the A/D Converter		
47	P56	D	General purpose IO		
47	TIN0	ם	TIN input for the 16-bit Reload Timer 0		
48	P57	D	General purpose IO		
40	ΤΟΤΟ	D	TOT output for the 16-bit Reload Timer 0		
	P70 to P73		General purpose IO		
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0		
	P74 to P77		General purpose IO		
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1		
	P80 to P83		General purpose IO		
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2		
	P84 to P87		General purpose IO		
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3		
74	P90	5	General purpose IO		
74	ТХ	D	TX output for CAN Interface		
75	P91	6	General purpose IO		
75	RX	D	RX input for CAN Interface		



Pin no.	Pin name	Circuit type	Function	
76	P92	D	General purpose IO	
70	INT0		External interrupt input for INT0	
78 to 80	P93 to P95	D	General purpose IO	
70 10 00	INT1 to INT3		External interrupt input for INT1 to INT3	
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)	
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)	
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter	
37	AVss	Power supply	Dedicated ground pin for the A/D Converter	
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter	
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter	
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to V_{CC} or $V_{SS}.$	
51	MD2	н	Operating mode selection input pin. This pin should be connected to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}.$	
27	С	_	External capacitor pin. A capacitor of $0.1 \mu F$ should be connected to this pin and Vss.	
23, 84	Vcc	Power supply	Power supply pins (5.0 V).	
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).	

4. I/O Circuit Type

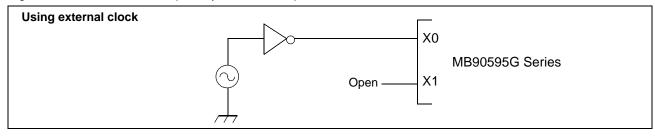
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

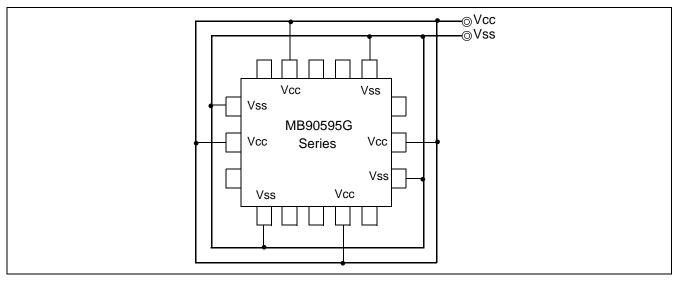

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

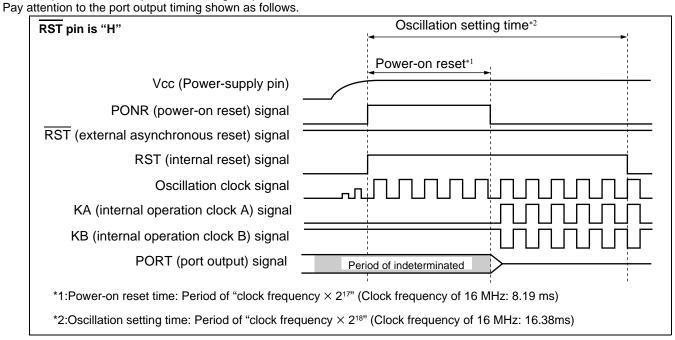
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

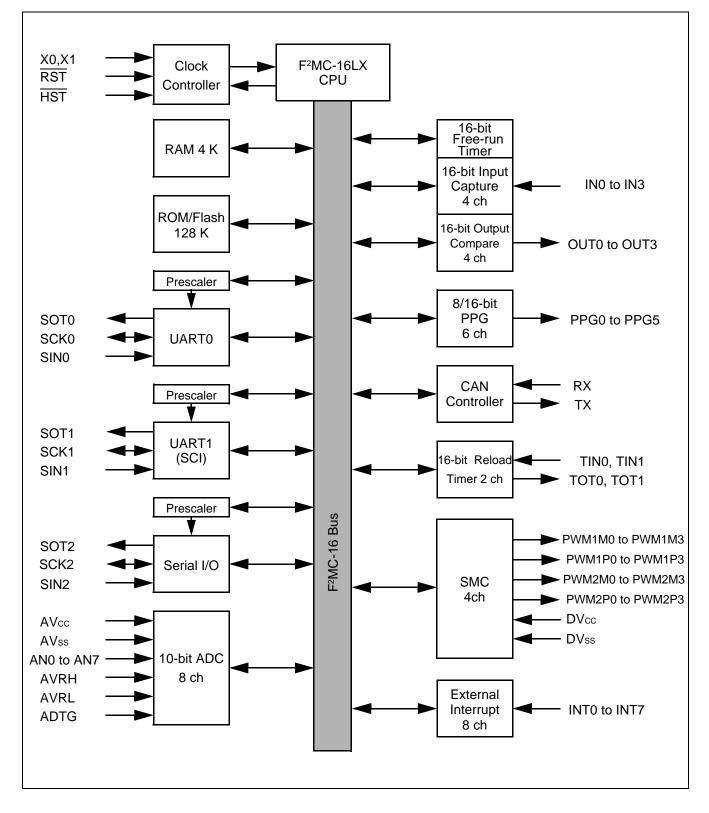
(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at


50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.


■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

6. Block Diagram

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		•
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1111111
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W	UART1	00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W		XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W	1	01111в

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010в
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB
2 Fн	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		000000000
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	000000000
33н	External Interrupt Level Register	ELVR	R/W		000000000
34н	A/D Control Status Register 0	ADCS0	R/W		000000000
35н	A/D Control Status Register 1	ADCS1	R/W		000000000
36н	A/D Data Register 0	ADCR0	R	A/D Converter	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_000_1в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	00000в
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_000_1в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16 bit Brogrommoble	0_000_1в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	16-bit Programmable Pulse	0_00001в
42 H	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43н		Reserved			
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16 bit Drogrommakia	0_000_1в
45 H	PPG7 Operation Mode Control Register	PPGC7	R/W	16-bit Programmable Pulse	0_00001в
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	
47 н		Reserved		1	
48 H	PPG8 Operation Mode Control Register	PPGC8	R/W	16 bit Drogsommet L	0_000_1в
49 н	PPG9 Operation Mode Control Register	PPGC9	R/W	16-bit Programmable Pulse	0_00001в
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	
4Bн		Reserved		1	

Address	Register	Abbreviation	Access	Peripheral	Initial value				
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1B				
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001B				
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0B				
4Fн	Reserved								
50н	Timer Control Status Register 0	TMCSR0	R/W		00000000 _B				
51 н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0 0 0 0 _B				
52 н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B				
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B				
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$				
55 H	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B				
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB				
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B				
58 H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$				
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000 _B				
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 0 _B				
5В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000B				
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000				
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B				
5 Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B				
5Fн		Reserved							
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$				
61н		Reserved							
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$				
63н		Reserved							
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B				
65 H		Reserved							
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0 _B				
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000				
68 H	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 0 _B				
69н to 6Ен		Reserved			(Conti				

(Continued)

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX
1930н to 19FFн		Re	served		
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1B00 H to 1BFFH	CAN	Controller. Refer to	section abou	ut CAN Controller	
1C00H to $1EFFH$		Re	served		
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB
1FF6н to 1FFFн		Re	served		

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

(Continued)

Address	Register	Abbreviation	Access	Initial Value
001B08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX
001B09н		IDEIX	1.7, 4.4	
001В0Ан	- Transmit RTR register	TRTRR	R/W	0000000 000000₀
001В0Вн			1.7, 4.4	000000000000000000000000000000000000000
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX
001B0Dн		NEWIN		
001B0Eн	Transmit interrupt enable register	TIER	R/W	0000000 0000000 _в
001B0Fн		HER	r/ vv	0000000 000000B
001B10н				XXXXXXXX XXXXXXXX
001B11н	Acceptance mask select register	AMSR	R/W	
001В12н		AWISK		XXXXXXXX XXXXXXXX
001B13н				
001B14н				XXXXXXXX XXXXXXXX
001B15⊦		AMRO	R/W	ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΒ
001B16⊦	 Acceptance mask register 0 	AWRU	R/VV	XXXXX XXXXXXXXB
001B17н				ХХХХХ ХХХХХХХХВ
001B18⊦				
001B19⊦			DAA	XXXXXXXX XXXXXXXXXB
001B1Aн	 Acceptance mask register 1 	AMR1	R/W	
001B1Bн				XXXXX XXXXXXXXB

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value	
001А00н to 001А1Fн	General-purpose RAM		R/W	XXXXXXXXB to XXXXXXXB	
001A20н				XXXXXXXX XXXXXXXB	
001A21н	ID register 0	IDR0	R/W		
001A22н		IDRO	r./ v v	XXXXX XXXXXXXXB	
001А23н				^^^^~~ ^^^^	
001A24н				XXXXXXXX XXXXXXXB	
001A25н	ID register 1	IDR1	R/W		
001A26н		IDRI	IX/ VV	XXXXX XXXXXXXXB	
001А27 н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
001A28н				XXXXXXXX XXXXXXXB	
001A29н	- ID register 2 IDR2 R/W	P/M			
001А2Ан		FX/ V V	XXXXX XXXXXXXXB		
001А2Вн				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value	
001A60н		DI ODO	D 444	~~~~~	
001А61 н	DLC register 0	DLCR0	R/W	XXXXB	
001A62н			DAA		
001A63н	DLC register 1	DLCR1	R/W	ХХХХв	
001A64н			DAA	VVV-	
001A65н	DLC register 2	DLCR2	R/W	ХХХХв	
001A66н	- DLC register 3	DLCR3	R/W	ХХХХв	
001А67 н	DLC register 3	DLCR3	R/VV	XXXAB	
001A68н	DLC register 4		DAM		
001A69н	DLC register 4	DLCR4	R/W	ХХХХв	
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв	
001A6Bн	DLC register 5	DLCRS	r./vv		
001A6Cн	DLC register 6	DLCR6	R/W	ХХХХв	
001A6DH	DLC register o	DLCRO	r./vv		
001A6Eн	DLC register 7	DLCR7	R/W	ХХХХв	
001A6Fн		DLCR7	r./vv		
001А70 н	DLC register 8	DLCR8	R/W	XXXX	
001A71 н	DLC register o	DECKO		^	
001А72 н	DLC register 9	DLCR9	R/W	XXXXB	
001А73 н	DLC register 9	DLCK9	FN/ V V		
001A74н	DLC register 10	DLCR10	R/W	XXXXB	
001A75н		DECKTO	10/00		
001A76н	DLC register 11	DLCR11	R/W	XXXXB	
001А77 н		DECKT	10/00		
001A78н	DLC register 12	DLCR12	R/W	XXXXB	
001A79н		DEORTZ	10,00		
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB	
001A7Bн		DEORIG			
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв	
001A7DH		DLOR 14			
001A7Eн	DLC register 15	DLCR15	R/W	XXXXB	
001A7Fн		DEORIG		/////6	
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB	

(Continued)

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

	El ² OS	Interru	pt vector	Interrupt control register		
Interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8H			
Exception	N/A	# 10	FFFFD4H			
CAN RX	N/A	# 11	FFFFD0H	10000	000000	
CAN TX/NS	N/A	# 12	FFFFCC _H	ICR00	0000В0н	
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10001	0000B1	
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000B1н	
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	000082	
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000В2н	
16-bit Free-run Timer	N/A	# 17	FFFFB8H	10000	0000000	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICR03	0000ВЗн	
Serial I/O	*1	# 19	FFFFB0H	ICR04	0000B4H	
External Interrupt (INT4/INT5)	*1	# 20	FFFFAC H	ICK04		
Input Capture 0	*1	# 21	FFFFA8H	ICR05	0000B5н	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICR05		
Output Compare 0	*1	# 23	FFFFA0H	ICR06	0000B6н	
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICRUO	ОООВОН	
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н	ICR07	0000 B7 н	
Input Capture 1	*1	# 26	FFFF94н			
8/16-bit PPG 4/5	N/A	# 27	FFFF90н	ICR08	0000B8н	
Output Compare 1	*1	# 28	FFFF8CH	101000	0000B0H	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICR09	0000B9н	
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000894	
8/16-bit PPG 8/9	N/A	# 31	FFFF80н	ICR10	0000BAн	
Output Compare 2	*1	# 32	FFFF7C _H		OOODAH	
Input Capture 3	*1	# 33	FFFF78⊦	ICR11	0000BBн	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт	0000BBA	
Output Compare 3	*1	# 35	FFFF70н	ICR12	0000BCH	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	0000000	
UART 0 RX	*2	# 37	FFFF68н	ICR13	0000BDн	
UART 0 TX	*1	# 38	FFFF64⊦			
UART 1 RX	*2	# 39	FFFF60н	ICR14	0000BEн	
UART 1 TX	*1	# 40	FFFF5C _H			
Flash Memory	N/A	# 41	FFFF58⊦	ICR15	0000BFн	
Delayed interrupt	N/A	# 42	FFFF54н		UUUUDFH	

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

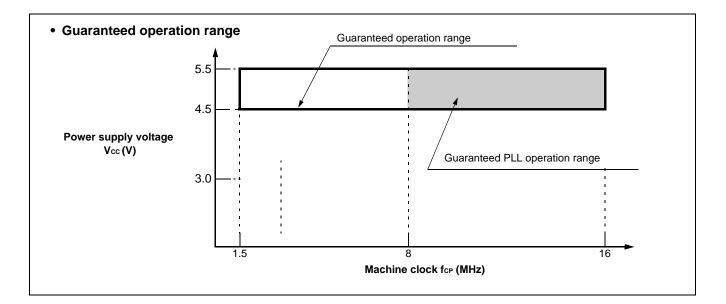
(Vss = AVss = 0.0 V)

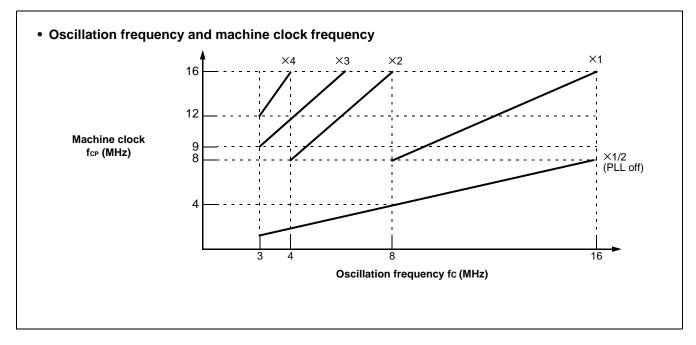
Parameter	Symbol	Rat	ting	Unit	Remarks	
Farameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	$V_{SS} - 0.3$	Vss + 6.0	V		
	AVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vı	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Output voltage	Vo	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Maximum Clamp Current		-2.0	2.0	mA	*6	
Maximum Total Clamp Current		—	20	mA	*6	
"L" level Max. output current	IOL1	_	15	mA	Normal output	*3
"L" level Avg. output current	OLAV1	—	4	mA	Normal output, average value	*4
"L" level Max. output current	IOL2	—	40	mA	High current output	*3
"L" level Avg. output current	OLAV2	—	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑lol1	—	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	—	330	mA	Total high current output	
"L" level Avg. overall output current	\sum IOLAV1	_	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	\sum IOLAV2	_	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	_	—15	mA	Normal output	*3
"H" level Avg. output current	IOHAV1	_	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	_	-40	mA	High current output	*3
"H" level Avg. output current	IOHAV2	_	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	_	-100	mA	Total normal output	
"H" level Max. overall output current	∑Іон₂	_	-330	mA	Total high current output	
"H" level Avg. overall output current	∑IOHAV1	_	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑Iohav2	—	-250	mA	Total high current output, average value	*5
Power concurrentian	Pp	—	500	mW	MB90F598G	
Power consumption	PD	—	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

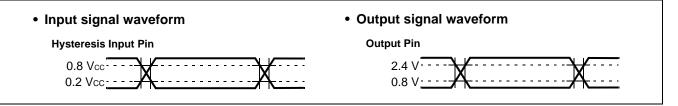
*2: VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3: The maximum output current is a peak value for a corresponding pin.

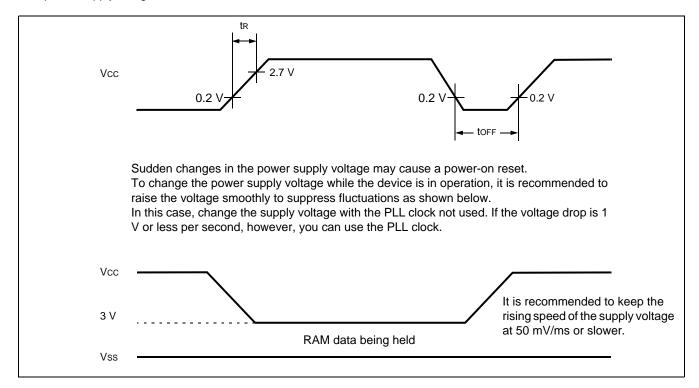

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.


*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

*6:


- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

AC characteristics are set to the measured reference voltage values below.

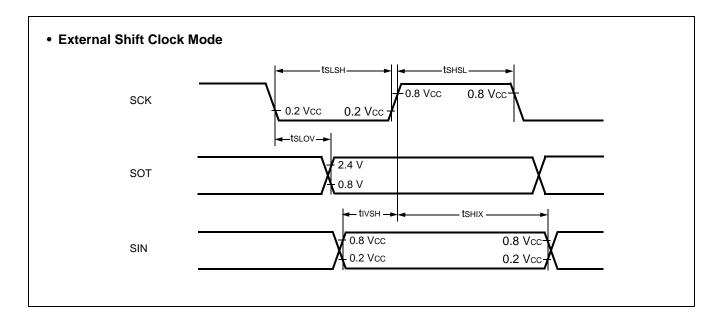

11.4.3 Power On Reset

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$								
Parameter	Symbol Pin name Condition Value Min Max		Unit	Remarks				
Falameter			Condition	Min	Max	Unit	inemarks	
Power on rise time	tR	Vcc		0.05	30	ms	*	
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation	

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

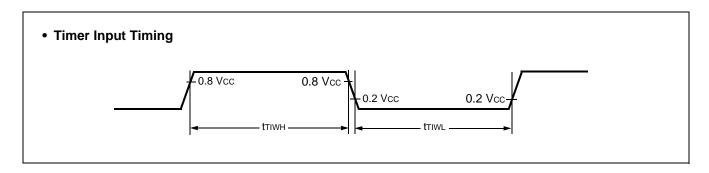
- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.



11.4.4 UART0/1, Serial I/O Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

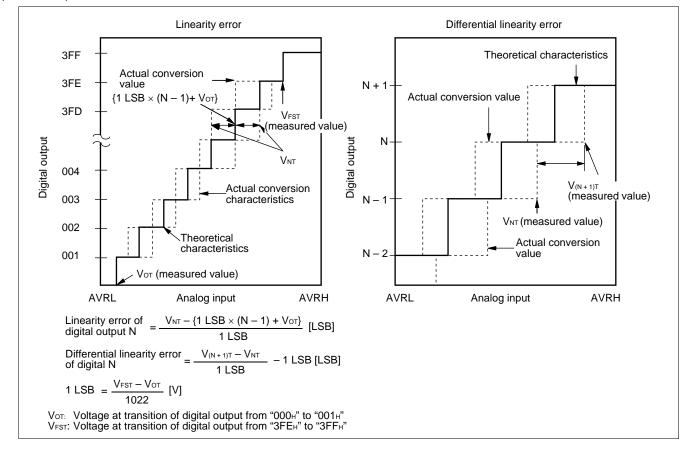
Parameter	Symbol	Pin name Condition		Value		Unit	Remarks
raianietei	Symbol	Finnanie	Condition	Min	Max	Onit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT \ delay \ time$	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100	_	ns	
$SCK\uparrow\RightarrowValid\;SIN\;hold\;time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60		ns	



(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

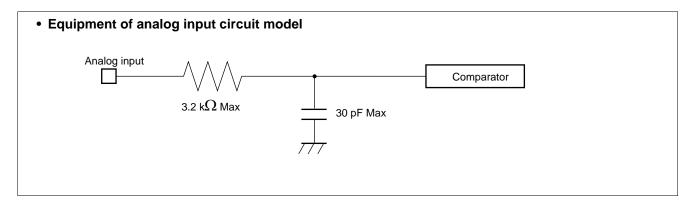
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol Finnar	Fin hame	Condition	Min	Max		Remarks	
Input pulse width	tтіwн	TIN0, TIN1	_		4 to -		20	
mput puise width	t⊤ıw∟	IN0 to IN3		4 tcp	_	ns		


11.4.5 Trigger Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Val	ue	Unit	Remarks		
Farameter	Symbol	Fill Hallie	Condition	Min	Max	Unit	Relliarks		
Input pulse width	tтrgн	INT0 to INT7,	_	5 tcp	_	ns	Under normal operation		
input puise width	t trgl	ADTG	ADTG	ADTG		1		μs	In stop mode

(Continued)



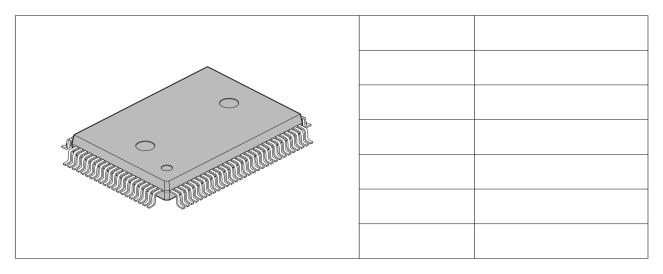
11.7 Notes on Using A/D Converter

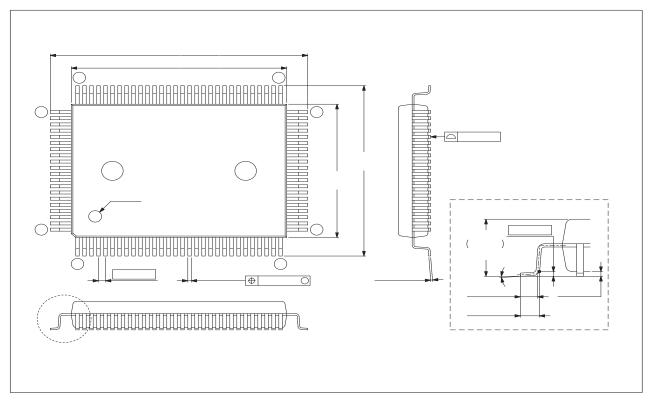
Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error


The smaller the |AVRH - AVRL|, the greater the error would become relatively.



13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

