

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Details                    |                                                                                  |
|----------------------------|----------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                         |
| Core Processor             | F <sup>2</sup> MC-16LX                                                           |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 16MHz                                                                            |
| Connectivity               | CANbus, EBI/EMI, SCI, Serial I/O, UART/USART                                     |
| Peripherals                | POR, PWM, WDT                                                                    |
| Number of I/O              | 78                                                                               |
| Program Memory Size        | 128KB (128K x 8)                                                                 |
| Program Memory Type        | Mask ROM                                                                         |
| EEPROM Size                |                                                                                  |
| RAM Size                   | 4K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                        |
| Data Converters            | A/D 8x8/10b                                                                      |
| Oscillator Type            | External                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-BQFP                                                                         |
| Supplier Device Package    | 100-QFP (14x20)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-125-jne1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



### Contents

| Product Lineup                                    | 3  |
|---------------------------------------------------|----|
| Pin Assignment                                    | 5  |
| Pin Description                                   | 6  |
| I/O Circuit Type                                  | 8  |
| Handling Devices                                  | 11 |
| Block Diagram                                     | 14 |
| Memory Space                                      |    |
| I/O Map                                           |    |
| Can Controller                                    |    |
| List of Control Registers                         | 23 |
| List of Message Buffers (ID Registers)            |    |
| List of Message Buffers (DLC Registers and        |    |
| Data Registers)                                   | 27 |
| Interrupt Source, Interrupt Vector, and Interrupt |    |
| Control Register                                  | 29 |
|                                                   |    |

| Electrical Characteristics   | 31 |
|------------------------------|----|
| Absolute Maximum Ratings     |    |
| Recommended Conditions       |    |
| DC Characteristics           |    |
| AC Characteristics           |    |
| A/D Converter                |    |
| A/D Converter Glossary       |    |
| Notes on Using A/D Converter | 45 |
| Flash memory                 |    |
| Example Characteristics      |    |
| Ordering Information         |    |
| Package Dimensions           |    |
| Major Changes                |    |



# 1. Product Lineup

|                                                                                                                                                                                                             | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MB90598G                                                                                                                                                                                                                                                                                                                                                         | MB90V595G                                                                                                                                                                                             |                        |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Classific                                                                                                                                                                                                   | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mask ROM product                                                                                                                                                                                                                                                                                                                                                 | Evaluation product                                                                                                                                                                                    |                        |  |  |  |  |
| ROM siz                                                                                                                                                                                                     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128 Kbytes                                                                                                                                                                                                                                                                                                                                                       | 128 Kbytes<br>Boot block<br>Hard-wired reset vector                                                                                                                                                   | None                   |  |  |  |  |
| RAM size                                                                                                                                                                                                    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 Kbytes                                                                                                                                                                                                                                                                                                                                                         | 4 Kbytes                                                                                                                                                                                              | 6 Kbytes               |  |  |  |  |
| Emulator                                                                                                                                                                                                    | r-specific power supply                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       | None                   |  |  |  |  |
| CPU fun                                                                                                                                                                                                     | ctions                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Interrupt processing time: 1.5 µs                                                                                                                                                                                                                                                                                                                                | Instruction bit length: 8 bits, 16 bits<br>Instruction length: 1 byte to 7 bytes<br>Data bit length: 1 bit, 8 bits, 16 bits<br>Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) |                        |  |  |  |  |
| UART0                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Clock synchronized transmission (500 K/1 M/2 Mbps)<br>Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500<br>/500000 bps at machine clock frequency of 16 MHz)<br>Transmission can be performed by bi-directional serial transmission or by master/slave connectio                                                                          |                                                                                                                                                                                                       |                        |  |  |  |  |
| UART1(                                                                                                                                                                                                      | SCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clock synchronized transmission (62.5 K/125<br>Clock asynchronized transmission (1202/240<br>Transmission can be performed by bi-directio                                                                                                                                                                                                                        | 4/4808/9615/31250 bps)                                                                                                                                                                                | ster/slave connection. |  |  |  |  |
| 8/10-bit /                                                                                                                                                                                                  | 8/10-bit A/D converter<br>8/10-bit A/D converter<br>Conversion precision: 8/10-bit can be selectively used.<br>Number of inputs: 8<br>One-shot conversion mode (converts selected channel once only)<br>Scan conversion mode (converts two or more successive channels and can program<br>up to 8 channels)<br>Continuous conversion mode (converts selected channel continuously)<br>Stop conversion mode (converts selected channel and stop operation repeatedly) |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |                        |  |  |  |  |
| 8/16-bit f<br>(6 chann                                                                                                                                                                                      | PPG timers<br>els)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ers Number of channels: 6 (8/16-bit × 6 channels)<br>PPG operation of 8-bit or 16-bit<br>A pulse wave of given intervals and given duty ratios can be output.<br>Pulse interval: fsys, fsys/2 <sup>1</sup> , fsys/2 <sup>2</sup> , fsys/2 <sup>2</sup> , fsys/2 <sup>4</sup> (fsys = system clock frequency)<br>128μs (fosc = 4MHz: oscillation clock frequency) |                                                                                                                                                                                                       |                        |  |  |  |  |
| Number of channels: 2           0peration clock frequency: fsys/2 <sup>1</sup> , fsys/2 <sup>3</sup> , fsys/2 <sup>5</sup> (fsys = System clock frequency)           Supports External Event Count function |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       | ency)                  |  |  |  |  |
| 16-bit                                                                                                                                                                                                      | 16-bit<br>Output compares                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of channels: 4<br>Pin input factor: A match signal of compare register                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                        |  |  |  |  |
| I/O tim-<br>er                                                                                                                                                                                              | Input captures                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of channels: 4<br>Rewriting a register value upon a pin input (ri                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |                        |  |  |  |  |



| Features                                  | MB90598G                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MB90F598G                                                                                                   | MB90V595G |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| CAN Interface                             | Number of channels: 1<br>Conforms to CAN Specification Version 2.0 Part A and B<br>Automatic re-transmission in case of error<br>Automatic transmission responding to Remote Frame<br>Prioritized 16 message buffers for data and ID's<br>Supports multiple messages<br>Flexible configuration of acceptance filtering:<br>Full bit compare / Full bit mask / Two partial bit masks<br>Supports up to 1Mbps<br>CAN bit timing setting:<br>MB90598G/F598G:TSEG2 ≥ RSJW |                                                                                                             |           |  |  |  |  |  |
| Stepping motor controller (4 channels)    | Four high current outputs for each channel<br>Synchronized two 8-bit PWM's for each channel                                                                                                                                                                                                                                                                                                                                                                           | our high current outputs for each channel<br>Synchronized two 8-bit PWM's for each channel                  |           |  |  |  |  |  |
| External interrupt circuit                | Number of inputs: 8<br>Started by a rising edge, a falling edge, an "H" le                                                                                                                                                                                                                                                                                                                                                                                            | Number of inputs: 8<br>Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. |           |  |  |  |  |  |
| Serial IO                                 | Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock<br>frequency of 16 MHz)<br>LSB first/MSB first                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |           |  |  |  |  |  |
| Watchdog timer                            | Reset generation interval: 3.58 ms, 14.33 ms, 57<br>(at oscillation of 4 MHz, minimum value)                                                                                                                                                                                                                                                                                                                                                                          | 7.23 ms, 458.75 ms                                                                                          |           |  |  |  |  |  |
| Flash Memory                              | Supports automatic programming, Embedded Algorithm and<br>Write/Erase/Erase-Suspend/Resume commands<br>A flag indicating completion of the algorithm<br>Hard-wired reset vector available in order to point to a fixed boot sector in Flash<br>Memory<br>Boot block configuration<br>Erase can be performed on each block<br>Block protection with external programming voltage<br>Flash Writer from Minato Electronics. Inc.                                         |                                                                                                             |           |  |  |  |  |  |
| Low-power consumption (stand-by) mode     | Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |           |  |  |  |  |  |
| Process                                   | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |           |  |  |  |  |  |
| Power supply voltage for opera-<br>tion*2 | +5 V±10 %                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |           |  |  |  |  |  |
| Package                                   | QFP-100                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QFP-100 PGA-256                                                                                             |           |  |  |  |  |  |

\*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

\*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")



| Pin no.  | Pin name                             | Circuit type | Function                                            |  |  |
|----------|--------------------------------------|--------------|-----------------------------------------------------|--|--|
| 20       | P50                                  | D            | General purpose IO                                  |  |  |
| 28       | SIN2                                 | D            | SIN Input for the Serial IO                         |  |  |
| 29 to 32 | P51 to P54                           | D            | General purpose IO                                  |  |  |
| 291032   | INT4 to INT7                         | D            | External interrupt input for INT4 to INT7           |  |  |
| 33       | P55                                  | D            | General purpose IO                                  |  |  |
|          | ADTG                                 | ם            | Input for the external trigger of the A/D Converter |  |  |
| 38 to 41 | P60 to P63                           | E            | General purpose IO                                  |  |  |
| 30 10 41 | AN0 to AN3                           | L            | Inputs for the A/D Converter                        |  |  |
| 43 to 46 | P64 to P67                           | E            | General purpose IO                                  |  |  |
| 43 10 40 | AN4 to AN7                           | L            | Inputs for the A/D Converter                        |  |  |
| 47       | P56                                  | D            | General purpose IO                                  |  |  |
| 47       | TIN0                                 | ם            | TIN input for the 16-bit Reload Timer 0             |  |  |
| 48       | P57                                  | D            | General purpose IO                                  |  |  |
| 40       | ΤΟΤΟ                                 | D            | TOT output for the 16-bit Reload Timer 0            |  |  |
|          | P70 to P73                           |              | General purpose IO                                  |  |  |
| 54 to 57 | PWM1P0<br>PWM1M0<br>PWM2P0<br>PWM2M0 | F            | Output for Stepper Motor Controller channel 0       |  |  |
|          | P74 to P77                           |              | General purpose IO                                  |  |  |
| 59 to 62 | PWM1P1<br>PWM1M1<br>PWM2P1<br>PWM2M1 | F            | Output for Stepper Motor Controller channel 1       |  |  |
|          | P80 to P83                           |              | General purpose IO                                  |  |  |
| 64 to 67 | PWM1P2<br>PWM1M2<br>PWM2P2<br>PWM2M2 | F            | Output for Stepper Motor Controller channel 2       |  |  |
|          | P84 to P87                           |              | General purpose IO                                  |  |  |
| 69 to 72 | PWM1P3<br>PWM1M3<br>PWM2P3<br>PWM2M3 | F            | Output for Stepper Motor Controller channel 3       |  |  |
| 74       | P90                                  | 5            | General purpose IO                                  |  |  |
| 74       | ТХ                                   | D            | TX output for CAN Interface                         |  |  |
| 75       | P91                                  | 6            | General purpose IO                                  |  |  |
| 75       | RX                                   | D            | RX input for CAN Interface                          |  |  |



| Pin no.    | Pin name     | Circuit type | Function                                                                                                                        |  |
|------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| 76         | P92          | D            | General purpose IO                                                                                                              |  |
| 70         | INT0         |              | External interrupt input for INT0                                                                                               |  |
| 78 to 80   | P93 to P95   | D            | General purpose IO                                                                                                              |  |
| 70 10 00   | INT1 to INT3 |              | External interrupt input for INT1 to INT3                                                                                       |  |
| 58, 68     | DVcc         | _            | Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)                                              |  |
| 53, 63, 73 | DVss         | _            | Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)                                                    |  |
| 34         | AVcc         | Power supply | Dedicated power supply pin for the A/D Converter                                                                                |  |
| 37         | AVss         | Power supply | Dedicated ground pin for the A/D Converter                                                                                      |  |
| 35         | AVRH         | Power supply | Upper reference voltage input for the A/D Converter                                                                             |  |
| 36         | AVRL         | Power supply | Lower reference voltage input for the A/D Converter                                                                             |  |
| 49, 50     | MD0<br>MD1   | С            | Operating mode selection input pins. These pins should be connected to $V_{CC}$ or $V_{SS}.$                                    |  |
| 51         | MD2          | н            | Operating mode selection input pin. This pin should be connected to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}.$ |  |
| 27         | С            | _            | External capacitor pin. A capacitor of $0.1 \mu F$ should be connected to this pin and $V_{ss}.$                                |  |
| 23, 84     | Vcc          | Power supply | Power supply pins (5.0 V).                                                                                                      |  |
| 11, 42, 81 | Vss          | Power supply | Ground pins (0.0 V).                                                                                                            |  |

# 4. I/O Circuit Type







| Circuit Type | Circuit            | Remarks                                                 |
|--------------|--------------------|---------------------------------------------------------|
|              |                    | CMOS high current output                                |
|              |                    | CMOS Hysteresis input                                   |
|              | P-ch               |                                                         |
|              |                    |                                                         |
|              | High current       |                                                         |
| F            | N-ch               |                                                         |
|              |                    |                                                         |
|              |                    |                                                         |
|              |                    |                                                         |
|              | R                  |                                                         |
|              | L <sub>W</sub> HYS |                                                         |
|              |                    | ■ CMOS output                                           |
|              | Vcc                | CMOS Hysteresis input                                   |
|              | P-ch               | ■ TTL input                                             |
|              |                    | (MB90F598G, only in Flash mode)                         |
|              | N-ch               |                                                         |
| G            |                    |                                                         |
| Ũ            |                    |                                                         |
|              | R                  |                                                         |
|              | HYS                |                                                         |
|              | R                  |                                                         |
|              |                    |                                                         |
|              |                    | <ul> <li>Hysteresis input</li> </ul>                    |
|              |                    | ■ Hysteresis input<br>Pull-down Resistor: 50 kΩ approx. |
|              |                    | (except MB90F598G)                                      |
| н            |                    |                                                         |
|              | R                  |                                                         |
|              |                    |                                                         |
|              | · · · ·            |                                                         |



### 5. Handling Devices

#### (1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

#### (2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k $\Omega$  resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

### (3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



### (4) Power supply pins (Vcc/Vss)

In products with multiple V<sub>cc</sub> or V<sub>ss</sub> pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect  $V_{cc}$  and  $V_{ss}$  pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1  $\mu$ F between V<sub>cc</sub> and V<sub>ss</sub> pins near the device.





### (5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

#### (6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

#### (7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

### (8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

#### (9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

#### (10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at

50 µs or more (0.2 V to 2.7 V).

#### (11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If  $\overline{RST}$  pin is "L", the outputs become high-impedance.





### 6. Block Diagram





### 9.3 List of Message Buffers (DLC Registers and Data Registers)

| Address                  | Register                   | Register Abbreviation Access |         | Initial Value               |  |
|--------------------------|----------------------------|------------------------------|---------|-----------------------------|--|
| 001A60н                  |                            |                              | D 444   | ~~~~~                       |  |
| <b>001А61</b> н          | DLC register 0             | DLCR0                        | R/W     | XXXXB                       |  |
| 001A62н                  |                            |                              | DAA     |                             |  |
| 001A63н                  | DLC register 1             | DLCR1                        | R/W     | ХХХХв                       |  |
| 001A64н                  |                            |                              | DAA     | VVV-                        |  |
| 001A65н                  | DLC register 2             | DLCR2                        | R/W     | ХХХХв                       |  |
| 001A66н                  | - DLC register 3           | DLCR3                        | R/W     | ХХХХв                       |  |
| <b>001А67</b> н          | DLC register 3             | DLCR3                        | R/VV    | XXXAB                       |  |
| 001A68н                  | DLC register 4             |                              | DAM     | VVV-                        |  |
| 001A69н                  | DLC register 4             | DLCR4                        | R/W     | ХХХХв                       |  |
| 001А6Ан                  | DLC register 5             | DLCR5                        | R/W     | ХХХХв                       |  |
| 001A6Bн                  | DLC register 5             | DLCRS                        | r./vv   |                             |  |
| 001A6Cн                  | DLC register 6             | DLCR6                        | R/W     | ХХХХв                       |  |
| 001A6DH                  | DLC register o             | DLCRO                        | r./vv   |                             |  |
| 001A6Eн                  | DLC register 7             | DLCR7                        | R/W     | ХХХХв                       |  |
| 001A6Fн                  |                            | DLCR7                        | r./vv   |                             |  |
| <b>001А70</b> н          | DLC register 8             | DLCR8                        | R/W     | XXXX                        |  |
| <b>001A71</b> н          | DLC register o             | DECKO                        |         | ^                           |  |
| <b>001А72</b> н          | DLC register 9             | DLCR9                        | R/W     | XXXXB                       |  |
| <b>001А73</b> н          | DLC register 9             | DLCK9                        | FN/ V V |                             |  |
| 001A74н                  | DLC register 10            | DLCR10                       | R/W     | XXXXB                       |  |
| 001A75н                  |                            | DECKTO                       | 10/00   |                             |  |
| 001A76н                  | DLC register 11            | DLCR11                       | R/W     | XXXXB                       |  |
| <b>001А77</b> н          |                            | DECKT                        | 10/00   |                             |  |
| 001A78н                  | DLC register 12            | DLCR12                       | R/W     | XXXXB                       |  |
| 001A79н                  |                            | DEORTZ                       | 10,00   |                             |  |
| 001А7Ан                  | DLC register 13            | DLCR13                       | R/W     | XXXXB                       |  |
| 001A7Bн                  |                            | DEORIG                       |         |                             |  |
| 001A7Cн                  | DLC register 14            | DLCR14                       | R/W     | ХХХХв                       |  |
| 001A7DH                  |                            | DLOR 14                      |         |                             |  |
| 001A7Eн                  | DLC register 15            | DLCR15                       | R/W     | XXXXB                       |  |
| 001A7Fн                  | DLC register 15 DLCR15 R/W |                              |         | /////6                      |  |
| 001А80н<br>to<br>001А87н | Data register 0 (8 bytes)  | DTR0                         | R/W     | XXXXXXXXB<br>to<br>XXXXXXXB |  |

(Continued)



### 10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

|                                | El <sup>2</sup> OS | Interru | pt vector           | Interrupt control register |                  |
|--------------------------------|--------------------|---------|---------------------|----------------------------|------------------|
| Interrupt source               | clear              | Number  | Address             | Number                     | Address          |
| Reset                          | N/A                | # 08    | FFFFDCH             |                            |                  |
| INT9 instruction               | N/A                | # 09    | FFFFD8H             |                            |                  |
| Exception                      | N/A                | # 10    | FFFFD4H             |                            |                  |
| CAN RX                         | N/A                | # 11    | FFFFD0H             | 10000                      | 0000000          |
| CAN TX/NS                      | N/A                | # 12    | FFFFCC <sub>H</sub> | ICR00                      | 0000В0н          |
| External Interrupt (INT0/INT1) | *1                 | # 13    | FFFFC8 <sub>H</sub> | 10001                      | 0000001          |
| Time Base Timer                | N/A                | # 14    | FFFFC4 <sub>H</sub> | ICR01                      | 0000B1н          |
| 16-bit Reload Timer 0          | *1                 | # 15    | FFFFC0H             | ICR02                      | 0000000          |
| 8/10-bit A/D Converter         | *1                 | # 16    | <b>FFFFBC</b> H     | ICR02                      | 0000В2н          |
| 16-bit Free-run Timer          | N/A                | # 17    | FFFFB8 <sub>H</sub> | 10000                      | 0000000          |
| External Interrupt (INT2/INT3) | *1                 | # 18    | FFFFB4H             | ICR03                      | 0000ВЗн          |
| Serial I/O                     | *1                 | # 19    | FFFFB0H             | ICR04                      | 0000B4⊦          |
| External Interrupt (INT4/INT5) | *1                 | # 20    | <b>FFFFAC</b> H     | ICK04                      | 0000B4H          |
| Input Capture 0                | *1                 | # 21    | FFFFA8H             | ICR05                      | 0000B5н          |
| 8/16-bit PPG 0/1               | N/A                | # 22    | FFFFA4H             | ICR05                      | 0000638          |
| Output Compare 0               | *1                 | # 23    | FFFFA0H             | ICR06                      | 0000 <b>В6</b> н |
| 8/16-bit PPG 2/3               | N/A                | # 24    | FFFF9CH             | ICRUO                      | 0000804          |
| External Interrupt (INT6/INT7) | *1                 | # 25    | FFFF98н             | ICR07                      | 0000 <b>B7</b> н |
| Input Capture 1                | *1                 | # 26    | FFFF94н             |                            | 0000071          |
| 8/16-bit PPG 4/5               | N/A                | # 27    | FFFF90н             | ICR08                      | 0000B8н          |
| Output Compare 1               | *1                 | # 28    | FFFF8CH             | 101000                     | 0000B0H          |
| 8/16-bit PPG 6/7               | N/A                | # 29    | FFFF88 <sub>H</sub> | ICR09                      | 0000 <b>В</b> 9н |
| Input Capture 2                | *1                 | # 30    | FFFF84 <sub>H</sub> | 101(09                     | 0000898          |
| 8/16-bit PPG 8/9               | N/A                | # 31    | FFFF80н             | ICR10                      | 0000ВАн          |
| Output Compare 2               | *1                 | # 32    | FFFF7C <sub>H</sub> |                            | UUUUDAH          |
| Input Capture 3                | *1                 | # 33    | FFFF78⊦             | ICR11                      | 0000BBн          |
| 8/16-bit PPG A/B               | N/A                | # 34    | FFFF74 <sub>H</sub> | юкт                        | 0000BBA          |
| Output Compare 3               | *1                 | # 35    | FFFF70н             | ICR12                      | 0000BCH          |
| 16-bit Reload Timer 1          | *1                 | # 36    | FFFF6C <sub>H</sub> | 101(12                     | 0000000          |
| UART 0 RX                      | *2                 | # 37    | FFFF68н             | ICR13                      | 0000BDн          |
| UART 0 TX                      | *1                 | # 38    | FFFF64⊦             |                            |                  |
| UART 1 RX                      | *2                 | # 39    | FFFF60н             | ICR14                      | 0000BEн          |
| UART 1 TX                      | *1                 | # 40    | FFFF5C <sub>H</sub> |                            |                  |
| Flash Memory                   | N/A                | # 41    | FFFF58⊦             | ICR15                      | 0000BFн          |
| Delayed interrupt              | N/A                | # 42    | FFFF54н             |                            | UUUUDI'H         |

\*1: The interrupt request flag is cleared by the El<sup>2</sup>OS interrupt clear signal.

\*2: The interrupt request flag is cleared by the El<sup>2</sup>OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.



- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :



Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.





| Parameter              | ameter Symbol Pin name Condition |               | Condition                                                                     | Value |     |     | Unit | Remarks             |
|------------------------|----------------------------------|---------------|-------------------------------------------------------------------------------|-------|-----|-----|------|---------------------|
| Farameter              | Symbol                           | Fill fidilite | Condition                                                                     | Min   | Тур | Max | Unit | Reillarks           |
| Input leak<br>current  | hı.                              |               | Vcc = 5.5 V,<br>Vss < Vi < Vcc                                                | -5    | _   | 5   | μA   |                     |
|                        | lcc                              |               | Vcc = 5.0 V±10%,<br>Internal frequency:                                       | —     | 35  | 60  | mA   | MB90598G            |
|                        | icc                              |               | 16 MHz,<br>At normal operating                                                | —     | 40  | 60  | mA   | MB90F598G           |
| Power supply current * | lccs                             |               | Vcc = 5.0 V±10%,<br>Internal frequency:<br>16 MHz,<br>At sleep                | _     | 11  | 18  | mA   |                     |
|                        | Істѕ                             | Vcc           | V <sub>CC</sub> = 5.0 V±1%,<br>Internal frequency:<br>2 MHz,<br>At timer mode | _     | 0.3 | 0.6 | mA   |                     |
|                        | Іссн                             |               | Vcc = 5.0 V±10%,<br>At stop, T <sub>A</sub> = 25°C                            | _     | —   | 20  | μA   |                     |
|                        | Іссн2                            |               | Vcc = 5.0 V±10%,<br>At Hardware stand-                                        | _     | _   | 20  | μA   | MB90598G            |
|                        | ICCH2                            |               | by mode,<br>T <sub>A</sub> = 25°C                                             |       | 50  | 100 | μΑ   | MB90F598G<br>(Conti |

(Continued)



### Example of Oscillation circuit





### 11.4.2 Reset and Hardware Standby Input

|                             |               |          | $(Vcc = 5.0 V \pm$                                                       | 10%, Vss | = AVss | $= 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85$ |
|-----------------------------|---------------|----------|--------------------------------------------------------------------------|----------|--------|--------------------------------------------------------------------------------|
| Parameter                   | Symbol        | Pin name | Value                                                                    |          | Unit   | Remarks                                                                        |
| Falametei                   | Min Max       | Unit     | Rellidi KS                                                               |          |        |                                                                                |
|                             |               |          | 16 tcp*1                                                                 | —        | ns     | Under normal operation                                                         |
| Reset input time            | <b>t</b> rstl | RST      | Oscillation time of oscillator <sup>*2</sup> + 16 $t_{CP}$ <sup>*1</sup> | —        | ms     | In stop mode                                                                   |
|                             |               |          | 16 tcp*1                                                                 | —        | ns     | Under normal operation                                                         |
| Hardware standby input time | tнsт∟         | HST      | Oscillation time of oscillator <sup>*2</sup> + 16 $t_{CP}^{*1}$          | —        | ms     | In stop mode                                                                   |

\*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

\*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.





### **12. Example Characteristics**











### **Supply Current**





### **13. Ordering Information**

| Part number               | Package                               | Remarks        |
|---------------------------|---------------------------------------|----------------|
| MB90598GPF<br>MB90F598GPF | 100-pin Plastic QFP<br>(FPT-100P-M06) |                |
| MB90V595GCR               | 256-pin Ceramic PGA<br>(PGA-256C-A01) | For evaluation |

# 14. Package Dimensions







### 15. Major Changes

### Spansion Publication Number: DS07-13705-7E

| Section                                          | Change Results                                                                                                         |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| -                                                | Deleted the old products, MB90598, MB90F598, and MB90V595.                                                             |
| -                                                | Changed the series name;<br>MB90595/595G series ? MB90595G series                                                      |
| -                                                | Changed the following erroneous name. I/O timer $\rightarrow$ 16-bit Free-run Timer                                    |
| PRODUCT LINEUP                                   | One of Standby mode name is changed. Clock mode $\rightarrow$ Watch mode                                               |
| I/O CIRCUIT TYPE                                 | Changed Pull-down resistor value of circuit type H.                                                                    |
| ELECTRICAL CHARACTERISTICS<br>AC Characteristics | Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing                                         |
|                                                  | Figure in (2) Reset and Hardware Standby Input<br>RST/HST input level of "In Stop Mode" is changed.<br>0.6 Vcc 0.2 Vcc |
| ELECTRICAL CHARACTERISTICS<br>5. A/D Converter   | Changed the items of "Zero transition voltage" and "Full scale transition voltage".                                    |

NOTE: Please see "Document History" about later revised information.

# **Document History**

Document Title: MB90598G/F598G/V595G F<sup>2</sup>MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date \*\* \_ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. \*A 5537128 AKIH 11/30/2016 Updated to Cypress template



### Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

### Products

| ARM <sup>®</sup> Cortex <sup>®</sup> Microcontrollers cypress. | oonii/anni |
|----------------------------------------------------------------|------------|
| Automotive cypress.com/au                                      | Itomotive  |
| Clocks & Buffers cypress.co                                    | m/clocks   |
| Interface cypress.com/                                         | /interface |
| Internet of Things cypres                                      | s.com/iot  |
| Lighting & Power Control cypress.com/pc                        | owerpsoc   |
| Memory cypress.com                                             | /memory    |
| PSoC cypress.c                                                 | com/psoc   |
| Touch Sensing cypress.co                                       | om/touch   |
| USB Controllers cypress.                                       | .com/usb   |
| Wireless/RF cypress.com                                        | /wireless  |

PSoC<sup>®</sup>Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

<sup>©</sup> Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.