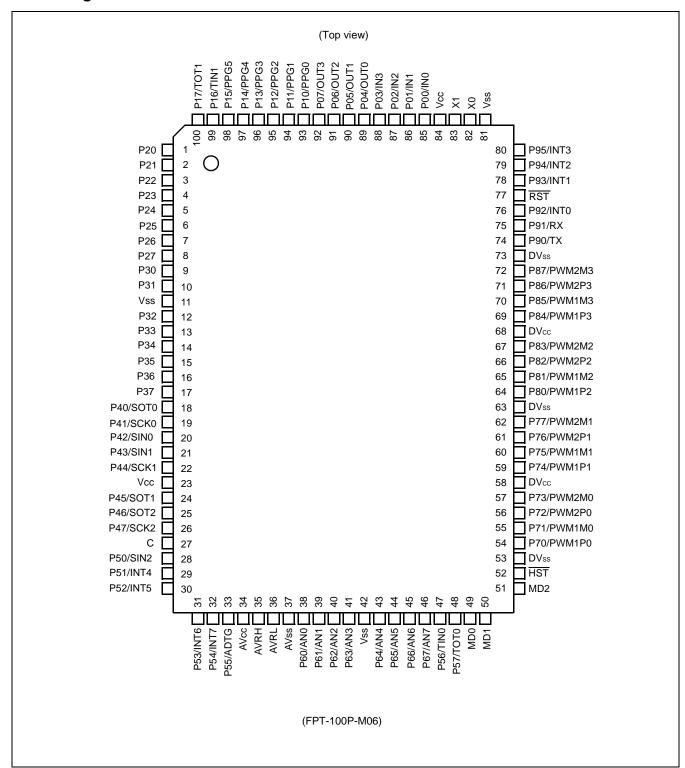


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

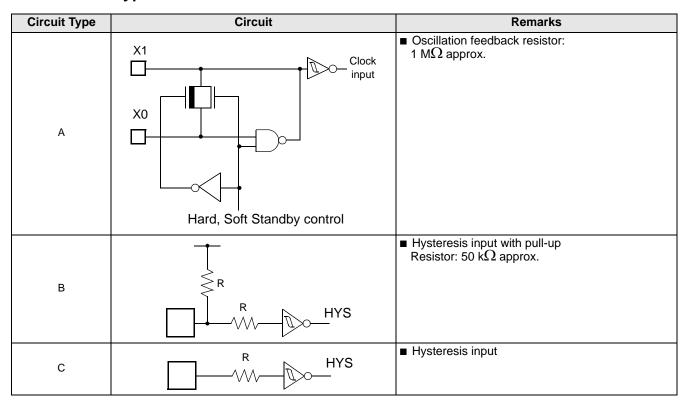
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-140-bnd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2. Pin Assignment

Pin no.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
70	INT0		External interrupt input for INT0
78 to 80	P93 to P95	D	General purpose IO
78 10 80	INT1 to INT3	D	External interrupt input for INT1 to INT3
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to Vcc or Vss.
51	MD2	Н	Operating mode selection input pin. This pin should be connected to Vcc or Vss.
27	С	_	External capacitor pin. A capacitor of $0.1\mu\text{F}$ should be connected to this pin and Vss.
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
	V	■ CMOS high current output
	Vcc	■ CMOS Hysteresis input
	P-ch	
	High current	
	riigir current	
F	N-ch	
	R	
	L _{\\\\} HYS	
		■ CMOS output
	Vcc	■ CMOS Hysteresis input
		■ TTL input
	P-ch	(MB90F598G, only in Flash mode)
	<u> </u>	
	N-ch	
G	'	
	///	
	R HYS	
	R TTL	
	V V V	
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
	R HYS	(except MB90F598G)
Н		
	 	

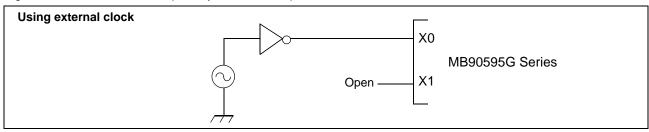
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

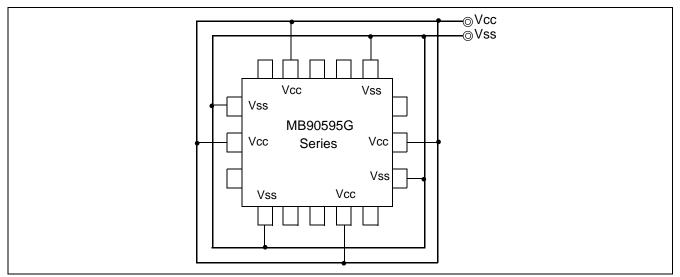

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least $2 \text{ k}\Omega$ resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{∞} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pins near the device.

Document Number: 002-07700 Rev. *A

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

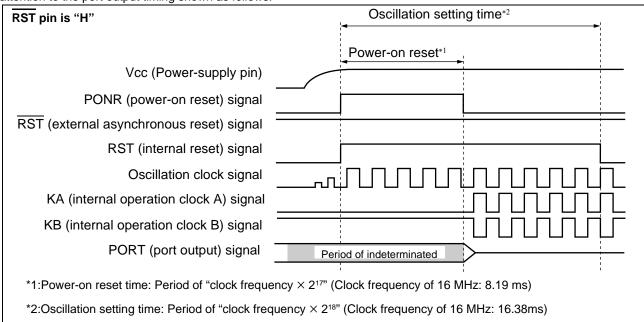
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.


(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu s$ or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

- If RST pin is "H", the outputs become indeterminate.
- If RST pin is "L", the outputs become high-impedance. Pay attention to the port output timing shown as follows.

Address	Register	Abbreviation	Access	Peripheral	Initial value		
29н to 2Ан		Reserved					
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в		
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в		
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	0 0 0 0 0 0 1 Ов		
2Ен	Serial Data Register	SDR	R/W		XXXXXXXX		
2Fн	Edge Selector	SES	R/W		Ов		
30н	External Interrupt Enable Register	ENIR	R/W		0 0 0 0 0 0 0 0в		
31н	External Interrupt Request Register	EIRR	R/W	Fortame al lasta municipal	XXXXXXXXB		
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	0 0 0 0 0 0 0 0 В		
33н	External Interrupt Level Register	ELVR	R/W		0 0 0 0 0 0 0 0 В		
34н	A/D Control Status Register 0	ADCS0	R/W		0 0 0 0 0 0 0 0 В		
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Converter	0 0 0 0 0 0 0 0 В		
36н	A/D Data Register 0	ADCR0	R	A/D Conventer	XXXXXXXXB		
37н	A/D Data Register 1	ADCR1	R/W		0 0 0 0 1 _ XX _B		
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_0001в		
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в		
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	0 0 0 0 0 0B		
3Вн		Reserved	İ				
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_0001в		
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в		
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000в		
3Fн		Reserved					
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_0001в		
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001в		
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в		
43н		Reserved		-			
44н	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_0001в		
45н	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001в		
46н	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	000000в		
47н		Reserved					
48н	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable	0_0001в		
49н	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse	0_00001в		
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	0 0 0 0 0 0B		
4Вн		Reserved	<u> </u> 	l .			

Address	Register	Abbreviation	Access	Peripheral	Initial value				
192Сн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX				
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/3	XXXXXXXX				
192Ен	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX				
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX				
1930н to 19FFн		Reserved							
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller					
1В00н to 1ВFFн	CAN Controller. Refer to section about CAN Controller								
1С00н to 1EFFн		Re	served						
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX				
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXXB				
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX				
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX				
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX				
1FF5н	Program Address Detection Register 1 (high-order)				XXXXXXXXB				
1FF6н to 1FFFн		Re	served						

■ Description for Read/Write R/W : Readable/writable

R : Read only W : Write only

■ Description of initial value

0 : the initial value of this bit is "0".
1 : the initial value of this bit is "1".

X: the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

Address	Register	Abbreviation	Access	Initial Value	
001В08н	- IDE register	IDER	R/W	XXXXXXX XXXXXXX	
001В09н	TDE register	IDEN	TX/VV	XXXXXXXX XXXXXXXX	
001В0Ан	Transmit RTR register	TRTRR	R/W	0000000 00000000	
001В0Вн	Transmit ix rix register	TIVITAL	TX/VV	0000000 0000000в	
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXX XXXXXXX	
001В0Dн	Tremote frame receive waiting register	IXI VVIIX	TX/VV	XXXXXXXX XXXXXXXX	
001В0Ен	Transmit interrupt enable register	TIER	R/W	00000000 00000000В	
001В0Гн	Transmit interrupt enable register	HEK	IX/VV	OUUUUUU UUUUUUUB	
001В10н				XXXXXXX XXXXXXXX	
001В11н	Acceptance mask select register	AMSR	R/W	700000000000000000000000000000000000000	
001В12н	Acceptance mask select register		IX/VV	XXXXXXX XXXXXXXX	
001В13н				**************************************	
001В14н				XXXXXXX XXXXXXXX	
001В15н	Acceptance mask register 0	AMR0	R/W	**************************************	
001В16н	Acceptance mask register 0	AIVIRU	K/VV	XXXXX XXXXXXXXB	
001В17н				**************************************	
001В18н				XXXXXXX XXXXXXX	
001В19н	Acceptance mask register 1	AMR1	R/W	AAAAAAA AAAAAAAA	
001В1Ан	Acceptance mask register 1	AIVIK I	IK/VV	VVVVV VVVVVVV	
001В1Вн				XXXXX XXXXXXXXB	

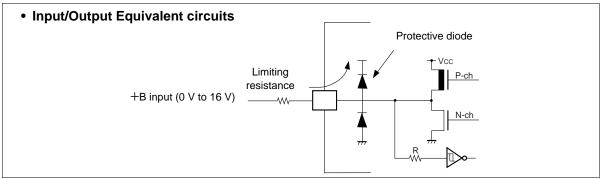
9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
001A00н to 001A1Fн	General-purpose RAM		R/W	XXXXXXXB to XXXXXXXXB
001А20н				XXXXXXX XXXXXXXB
001А21н	ID register 0	IDR0	R/W	^^^^^^
001А22н	Tib Tegister 0	IDKU	IX/VV	XXXXX XXXXXXXXB
001А23н			VVVV VVVVVVV	
001А24н				XXXXXXX XXXXXXXB
001А25н	ID register 1	IDR1	R/W	**************************************
001А26н	To register 1	IDKT	IX/VV	XXXXX XXXXXXXX _B
001А27н				XXXX XXXXXXXB
001А28н				XXXXXXX XXXXXXXB
001А29н	ID register 2	IDR2	R/W	AAAAAAAAAAAAAAA
001А2Ан	To register 2	IDNZ	17/ //	XXXXX XXXXXXXX _B
001А2Вн				VVVVV VVVVVVV

Address	Register	Abbreviation	Access	Initial Value		
001А2Сн				XXXXXXX XXXXXXXB		
001А2Dн	ID register 3	IDR3	R/W	**************************************		
001А2Ен	To register 3	IDIX5	17/77	XXXXX XXXXXXXX _B		
001А2Гн				XXXX XXXXXXXB		
001А30н				XXXXXXX XXXXXXXB		
001А31н	ID register 4	IDR4	R/W	AAAAAAA AAAAAAAA		
001А32н	ID register 4	IDI(4	17/77	XXXXX XXXXXXXX _B		
001А33н						
001А34н				XXXXXXX XXXXXXXB		
001А35н	ID register 5	IDR5	R/W	AAAAAAA AAAAAAAA		
001А36н	To register 5	IDIX9	17/77	XXXXX XXXXXXXX _B		
001А37н				XXXX XXXXXXX		
001А38н				XXXXXXX XXXXXXXB		
001А39н	ID register 6	IDR6	R/W	AAAAAAA AAAAAAAA		
001А3Ан	To register 0	IDIXO	17/77	XXXXX XXXXXXXX _B		
001А3Вн				VVVVV VVVVVVV		
001А3Сн				XXXXXXX XXXXXXXB		
001А3Дн	ID register 7	IDR7	R/W	7777777		
001А3Ен	In register /	IDK/	IX/ VV	XXXXX XXXXXXXXB		
001А3Гн	1			VVVV VVVVVVB		

Address	Register	Abbreviation	Access	Initial Value	
001А40н				VVVVVV VVVVVV	
001А41н	ID register 8	IDR8	R/W	XXXXXXXX XXXXXXXB	
001А42н	Tegister o	IDRo	I K/VV	XXXXX XXXXXXXXB	
001А43н				**************************************	
001А44н				XXXXXXX XXXXXXX	
001А45н	ID register 9	IDR9	R/W	7/////// 7////////////////////////////	
001А46н	Togotor o	IBIKO	17,77	XXXXX XXXXXXXXB	
001А47н				70000 7000000	
001А48н				XXXXXXX XXXXXXX	
001А49н	ID register 10	IDR10	R/W	700000000000000000000000000000000000000	
001А4Ан		.20	. ,	XXXXX XXXXXXXXB	
001А4Вн					
001А4Сн				XXXXXXXX XXXXXXXX	
001A4Dн	ID register 11	IDR11	R/W		
001А4Ен				XXXXX XXXXXXXXB	
001А4Гн					
001А50н		IDR12		XXXXXXXX XXXXXXXX	
001А51н	ID register 12		R/W		
001А52н				XXXXX XXXXXXXXB	
001А53н					
001А54н				XXXXXXX XXXXXXXX	
001А55н	ID register 13	IDR13	R/W		
001А56н 001А57н				XXXXX XXXXXXXXB	
001А57н					
001А56н				XXXXXXX XXXXXXXB	
001А5Ан	ID register 14	IDR14	R/W		
001A5Aн				XXXXX XXXXXXXXB	
001/\text{1/CBH}					
001A5Dн				XXXXXXXX XXXXXXXB	
001А5Ен	ID register 15	IDR15	R/W		
001A5Fн				XXXXX XXXXXXXXB	

Notes:


- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
- If El²OS is enabled, El²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same El²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the El²OS, the other interrupt should be disabled.

Document Number: 002-07700 Rev. *A Page 30 of 51

Page 32 of 51

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

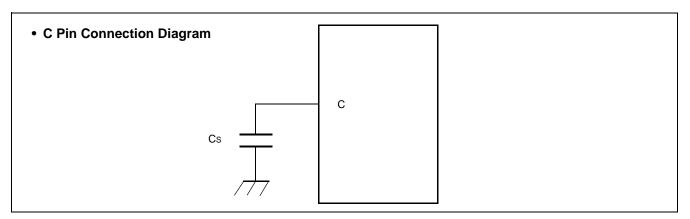
Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Document Number: 002-07700 Rev. *A

11.2 Recommended Conditions

(Vss = AVss = 0.0 V)


Parameter	Symbol	Value		Unit	Remarks				
Farameter	Syllibol	Min	Тур	Max	Oilit	Remarks			
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation			
Fower supply voltage	AVcc	3.0	_	5.5	V	Maintains RAM data in stop mode			
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*			
Operating temperature	TA	-40	_	+85	°C				

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

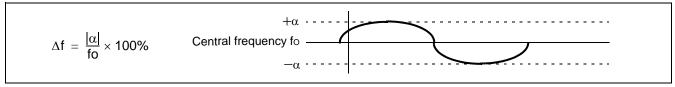
 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \,^{\circ}C \text{ to } +85 \,^{\circ}C)$

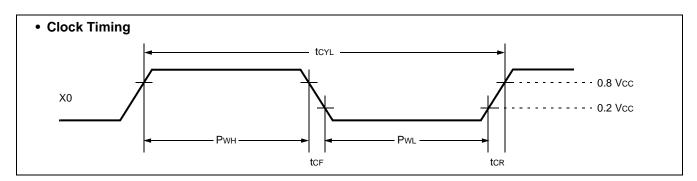
			(***	0.0 V <u></u>	0, 100 /	1100 0.0	, , , ,	10 0 10 1
Parameter	Symbol	Pin name	Condition		Value	Unit	Remarks	
Parameter	Syllibol	Fill flame	Condition	Min	Тур	Max	Offic	Remarks
Input H voltage	VIHS	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V	
,	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc +0.3	V	
Input L voltage	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
	VILM	MD input pin	_	Vss - 0.3	_	Vss +0.3	V	
Output H voltage	V _{OH1}	Output pins except P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH1} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
	V _{OH2}	P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH2} = -30.0 \text{ mA}$	Vcc - 0.5	_	_	V	
Output L voltage	V _{OL1}	Output pins except P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL1} = 4.0 \text{ mA}$	_	_	0.4	V	
	V _{OL2}	P70 to P87	Vcc = 4.5 V, IoL2 = 30.0 mA	_	_	0.5	V	

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

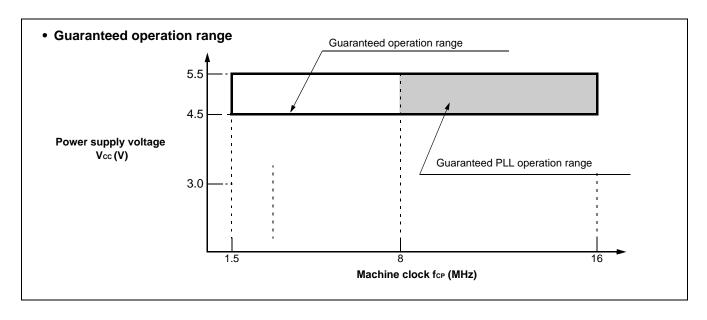
Parameter	Symbol	Pin name	Condition		Value	Unit	Remarks	
rarameter			Condition	Min	Тур	Max	Oiiii	Remarks
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
		P70 to P87	_	_	15	30	pF	
Pull-up resistance	Rup	RST	_	25	50	100	k Ω	
Pull-down resistance	RDOWN	MD2		25	50	100	kΩ	

^{*:} The power supply current testing conditions are when using the external clock.

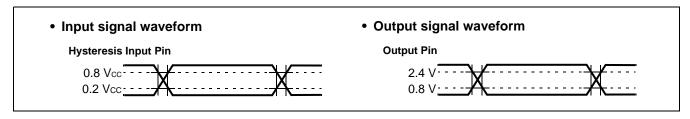

11.4 AC Characteristics

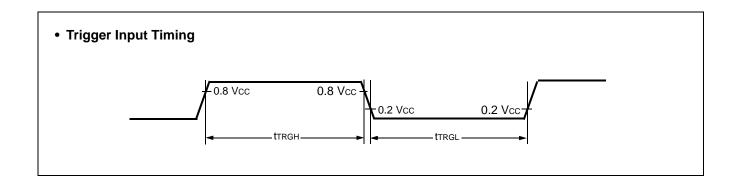

11.4.1 Clock Timing

(Vcc = 5.0 V
$$\pm$$
10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)

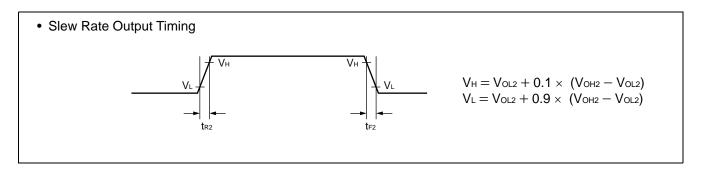

						1	, I	
Parameter	Symbol	Pin name		Value		Unit	Remarks	
r ai ailletei	Symbol	Fill Hallie	Min	Тур	Max	Oilit		
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit	
Oscillation cycle time	tcyL	X0, X1	200	_	333	ns	When using oscillation circuit	
External clock frequency	fc	X0, X1	3	_	16	MHz	When using external clock	
External clock cycle time	tcyL	X0, X1	62.5	_	333	ns	When using external clock	
Frequency deviation with PLL *	Δf	_	_	_	5	%		
Input clock pulse width	Pwh, Pwl	X0	10	_	_	ns	Duty ratio is about 30 to 70%.	
Input clock rise and fall time	tcr, tcr	X0	_	_	5	ns	When using external clock	
Machine clock frequency	fcp	_	1.5	_	16	MHz		
Machine clock cycle time	t CP	_	62.5	_	666	ns		
Flash Read cycle time	tcyL	_	_	2*tcp	_	ns	When Flash is accessed via CPU	


^{*:} Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.





AC characteristics are set to the measured reference voltage values below.



11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only)

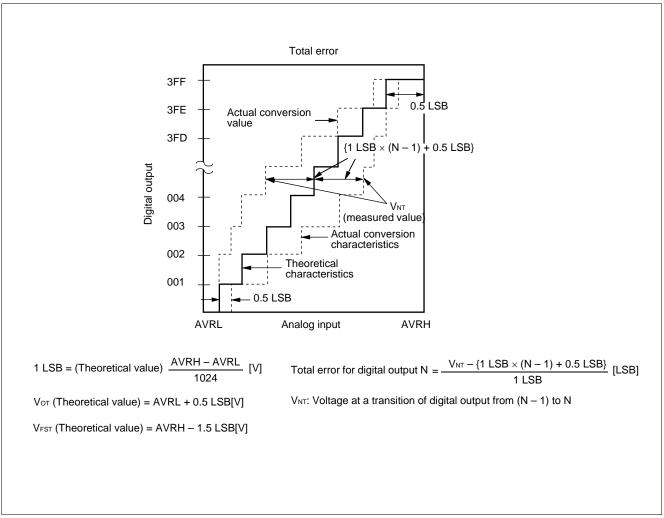
 $(Vcc = 5.0 V\pm 10 \%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol Pin name		Condition		Value	Unit	Remarks	
Farameter	Symbol Fill hame	riii iiaiiie	Condition	Min	Тур	Max	Onn	iveillai ks
Output Rise/Fall time	t _{R2}	Port P70 to P77, Port P80 to P87	_	15	40	150	ns	

11.5 A/D Converter

(Vcc = AVcc = 5.0 V±10%, Vss = AVss = 0.0 V,3.0 V \leq AVRH - AVRL, T_A = -40 $^{\circ}$ C to +85 $^{\circ}$ C)

Parameter	Sym-	Pin name		Value	Unit	Remarks	
Parameter	bol	Pin name	Min	Min Typ			
Resolution	_	_	_		10	bit	
Conversion error	_	_	_	_	±5.0	LSB	
Nonlinearity error	_	_	_	_	±2.5	LSB	
Differential linearity error	_	_	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	_	_	352tcp	_	ns	
Sampling time	_	_	_	64tcp	_	ns	
Analog port input current	Iain	AN0 to AN7	-10	_	10	μА	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	



11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

11.8 Flash memory

■ Erase and programming performance

Parameter	Condition	Value			Unit	Remarks		
		Min	Тур	Max	Onit	venigik2		
Sector erase time		_	1	15	s	MB90F598G	Excludes 00H programming prior erasure	
Chip erase time	$T_A = +25$ °C, $V_{CC} = 5.0 \text{ V}$	_	5	_	S	MB90F598G	Excludes 00H programming prior	
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead	
Erase/Program cycle	_	10000	-	_	cycle			

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
_	Deleted the old products, MB90598, MB90F598, and MB90V595.
_	Changed the series name; MB90595/595G series ? MB90595G series
_	Changed the following erroneous name. I/O timer → 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode → Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

	Document Title: MB90598G/F598G/V595G F ² MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700						
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	_	AKIH	09/26/2008	Migrated to Cypress and assigned document number 002-07700. No change to document contents or format.			
*A	5537128	AKIH	11/30/2016	Updated to Cypress template			

Document Number: 002-07700 Rev. *A Page 50 of 51

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB** Controllers cypress.com/usb Wireless/RF cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-07700 Rev. *A Revised November 30, 2016 Page 51 of 51