

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-140-jne1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Description

Pin no.	Pin name	Circuit type	Function
82	X0	٨	
83	X1	A	
77	RST	В	Reset input
52	HST	С	Hardware standby input
95 to 99	P00 to P03	G	General purpose IO
05 10 00	IN0 to IN3	G	Inputs for the Input Captures
90 to 02	P04 to P07	C	General purpose IO
09 10 92	OUT0 to OUT3	G	Outputs for the Output Compares.
02 to 08	P10 to P15	P	General purpose IO
93 10 96	PPG0 to PPG5		Outputs for the Programmable Pulse Generators
00	P16	P	General purpose IO
99	TIN1		TIN input for the 16-bit Reload Timer 1
400	P17	P	General purpose IO
100	TOT1		TOT output for the 16-bit Reload Timer 1
1 to 8	P20 to P27	G	General purpose IO
9 to 10	P30 to P31	G	General purpose IO
12 to 16	P32 to P36	G	General purpose IO
17	P37	D	General purpose IO
40	P40	<u> </u>	General purpose IO
18	SOT0	G	SOT output for UART 0
10	P41	6	General purpose IO
19	SCK0	G	SCK input/output for UART 0
00	P42	6	General purpose IO
20	SIN0	G	SIN input for UART 0
04	P43	6	General purpose IO
21	SIN1	G	SIN input for UART 1
	P44	6	General purpose IO
22	SCK1	G	SCK input/output for UART 1
04	P45	6	General purpose IO
24	SOT1	G	SOT output for UART 1
05	P46	6	General purpose IO
25	SOT2	G	SOT output for the Serial IO
	P47	â	General purpose IO
20	SCK2	G	SCK input/output for the Serial IO

5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at

50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram

7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		•
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 _H	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed	·	·
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1 1 1 1 1 1 1 1 _B
1Cн to 1Fн		Reserv	ed	·	·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UARTU	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		000000Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
6Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXX _B
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXX _B
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
74н	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXX _B
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXX _B
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7 8н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX _B
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX _B
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7 Вн	PWM2 Select Register 2	PWS22	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7Fн	PWM2 Select Register 3	PWS23	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
80н to 8Fн	CAN Controlle	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_{ m B}$
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0в
А0н	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0 _B
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100 _B
A2H to A7H		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	$1_{-}00100_{B}$
AAH to ADH		Reserved			
АЕн	Flash Memory Control Status Register FMCS R/W Flash Memory (MB90F598G only. FMCS R/W Flash Memory Otherwise reserved) FMCS R/W Flash Memory				0 0 0 X 0 0 0 0 _B
AFH		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111в
В1н	Interrupt Control Register 01	ICR01	R/W	Interrupt controller	00000111в
В2н	Interrupt Control Register 02	ICR02	R/W	interrupt controller	00000111в
В3н	Interrupt Control Register 03	ICR03	R/W		00000111
B4 _H	Interrupt Control Register 04	ICR04	R/W		00000111
В5н	Interrupt Control Register 05	ICR05	R/W		00000111
В6н	Interrupt Control Register 06	ICR06	R/W		00000111
В7н	Interrupt Control Register 07	ICR07	R/W		00000111
В8 н	Interrupt Control Register 08	ICR08	R/W		00000111
В9н	Interrupt Control Register 09	ICR09	R/W	Interrupt controller	00000111
ВАн	Interrupt Control Register 10	ICR10	R/W	interrupt controller	00000111
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111
BDн	Interrupt Control Register 13	ICR13	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
BEн	Interrupt Control Register 14	ICR14	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
BFн	Interrupt Control Register 15	ICR15	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
COн to FFн		Reser	ved		
1900 H	Reload Register L	PRLL0	R/W		XXXXXXXX _B
1901 H	Reload Register H	PRLH0	R/W	16-bit Programmable	XXXXXXXXXB
1902 н	Reload Register L	PRLL1	R/W	Generator 0/1	XXXXXXXX _B
1903 н	Reload Register H	PRLH1	R/W		XXXXXXXX _B
1904 _H	Reload Register L	PRLL2	R/W		XXXXXXXX _B
1905 н	Reload Register H	PRLH2	R/W	16-bit Programmable	XXXXXXXX _B
1906 н	Reload Register L	PRLL3	R/W	Generator 2/3	XXXXXXXX _B
1907 н	Reload Register H	PRLH3	R/W		XXXXXXXXB
1908 н	Reload Register L	PRLL4	R/W		XXXXXXXX _B
1909 н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXXB
190Ан	Reload Register L	PRLL5	R/W	Generator 4/5	XXXXXXXX
190В н	Reload Register H	PRLH5	R/W		XXXXXXXX
190Cн	Reload Register L	PRLL6	R/W		XXXXXXXX _B
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXX
190Eн	Reload Register L	PRLL7	R/W	Generator 6/7	XXXXXXXX
190F н	Reload Register H	PRLH7	R/W		XXXXXXXXB

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- □ 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BV/AL P	P/M		
000081 H	Nessage builer valid register	BVALK	IX/ VV	0000000 000000B	
000082н	Transmit request register	TREOR	R/W	0000000 00000000	
000083н		mean	10,00		
000084н	Transmit cancel register	TCANR	14/	0000000 0000000₀	
000085н		TOANK	vv	0000000 00000008	
000086н	Transmit complete register	TCR	P ///		
000087н		TOR	10/00	000000000000000000000000000000000000000	
000088н	Receive complete register	PCP	P/M		
000089н	Receive complete register	KOK	11/11	0000000 000000B	
00008Ан	Remote request receiving register	RRTRR	P/M		
00008BH	Remote request receiving register		11/11	0000000 0000008	
00008Cн		RO\/RR	R/M	0000000 00000008	
00008Dн		NOVIN	10/00		
00008EH	Receive interrupt enable register	RIER	R/M	0000000 0000000	
00008Fн	Receive interrupt chable register	MEN	10/00		
001В00н	Control status register	CSP		00000 00-1-	
001B01н		COR	10/00, 10	00000 00-18	
001B02н	Last event indicator register	I EIR	P/M	000-000p	
001В03н	Last event indicator register		10/00	000-00008	
001B04 _H	Receive/transmit error counter	RTEC	P		
001B05н		KILO		0000000 0000000B	
001B06н	Bit timing register	BTP	P/M	_1111111 1111111	
001В07 н		DIK	FX/ V V	-111111 1111111B	

9.1 List of Control Registers

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

	El ² OS	Interru	pt vector	Interrupt control register		
interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8H			
Exception	N/A	# 10	FFFFD4H			
CAN RX	N/A	# 11	FFFFD0H	ICB00	000080	
CAN TX/NS	N/A	# 12	FFFFCC _H	ICRUU	UUUUDUH	
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8H		0000B1	
Time Base Timer	N/A	# 14	FFFFC4H	ICRUI	0000611	
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICB02	0000B2	
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000628	
16-bit Free-run Timer	N/A	# 17	FFFFB8H		0000B2	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICRUS	0000634	
Serial I/O	*1	# 19	FFFFB0H		0000R4	
External Interrupt (INT4/INT5)	*1	# 20	FFFFACH	ICR04	0000 D 4H	
Input Capture 0	*1	# 21	FFFFA8H		0000R5	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICK05	0000858	
Output Compare 0	*1	# 23	FFFFA0H		0000Reu	
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICK00	0000B0H	
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н		0000B7H	
Input Capture 1	*1	# 26	FFFF94н			
8/16-bit PPG 4/5	N/A	# 27	FFFF90 _H		000088	
Output Compare 1	*1	# 28	FFFF8CH		0000000	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H		000089	
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000034	
8/16-bit PPG 8/9	N/A	# 31	FFFF80 _H		000084	
Output Compare 2	*1	# 32	FFFF7C _H		OOODAH	
Input Capture 3	*1	# 33	FFFF78⊦		0000BB	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт		
Output Compare 3	*1	# 35	FFFF70н		0000BCu	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	000000	
UART 0 RX	*2	# 37	FFFF68 _H			
UART 0 TX	*1	# 38	FFFF64н	101(13		
UART 1 RX	*2	# 39	FFFF60 _H		0000BE	
UART 1 TX	*1	# 40	FFFF5CH			
Flash Memory	N/A	# 41	FFFF58 _H			
Delayed interrupt	N/A	# 42	FFFF54H	ICK IS	0000BFH	

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

Parameter	Symbol	Pin namo	Condition		Value		Unit	Bomarka	
Falameter	Symbol	Finname	Condition	Min	Тур Мах		Unit	Remarks	
Input leak current	١L		Vcc = 5.5 V, Vss < V1 < Vcc	-5	_	5	μΑ		
Power supply current *			$V_{CC} = 5.0 V \pm 10\%$, Internal frequency:	_	35	60	mA	MB90598G	
	ICC		16 MHz, At normal operating	—	40	60	mA	MB90F598G	
	lccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep	_	11	18	mA		
	Істѕ	Vcc	V _{cc} = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA		
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	_	_	20	μA		
	locus		Vcc = 5.0 V±10%, At Hardware stand-	_	_	20	μA	MB90598G	
	ICCH2		by mode, T₄ = 25°C		50	100	μΑ	MB90F598G	

11.4.2 Reset and Hardware Standby Input

			$(Vcc = 5.0 V \pm$	10%, Vss	= AVss	$s = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +80 ^{\circ}$	35 °C
Paramotor	Sumbal Din nome		Value		Unit	Bomarks	
Falametei	Symbol	Finitianie	Min	Max	Unit	Reillai KS	
		RST	16 tcp*1	—	ns	Under normal operation	
Reset input time	t rstl		Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode	
			16 tcp*1	—	ns	Under normal operation	
Hardware standby input time	tнsт∟	HST	Oscillation time of oscillator*2 + 16 tcp*1	_	ms	In stop mode	

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramotor	Symbol Pin name		Condition	Val	ue	Unit	Pomarks
Falameter	Symbol		Condition	Min	Max	Unit	Remarks
Innut nules width	tтіwн	TIN0, TIN1		4 to-		20	
	t⊤ıw∟	IN0 to IN3	—	4 ICP	_	115	

11.4.5 Trigger Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Symbol	Din namo	Condition	Va	Value		Pomarks
		Fill liallie	Condition	Min	Max		Rellidiks	
Input pulse width	tтrgн	INT0 to INT7, ADTG	_	5 tcp	_	ns	Under normal operation	
	t trgl			1	_	μs	In stop mode	

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) (Vcc = 5.0 V±10 %, Vss = AVss = 0.0 V, T _A = −40 °C to +85 °C)									
Parameter	Symbol	Pin name	Condition	Min	Value Typ	Мах	Unit	Remarks	
Output Rise/Fall time	tr2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym- bol	Pin name	Value			Unit	Pomorko
			Min	Тур	Max	Unit	Reindiks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	—	±5.0	LSB	
Nonlinearity error	—	—	_	—	±2.5	LSB	
Differential linearity error	—	—	_	—	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	—	—		352tcp	—	ns	
Sampling time	—	—	_	64tcP	—	ns	
Analog port input current	IAIN	AN0 to AN7	-10		10	μA	
Analog input voltage range	VAIN	AN0 to AN7	AVRL	_	AVRH	V	

(Continued)

11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

12. Example Characteristics

Supply Current

13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
_	Deleted the old products, MB90598, MB90F598, and MB90V595.
_	Changed the series name; MB90595/595G series ? MB90595G series
_	Changed the following erroneous name. I/O timer \rightarrow 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode \rightarrow Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 V_{CC} 0.2 V_{CC}
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date ** _ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. *A 5537128 AKIH 11/30/2016 Updated to Cypress template