

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-141-bnd

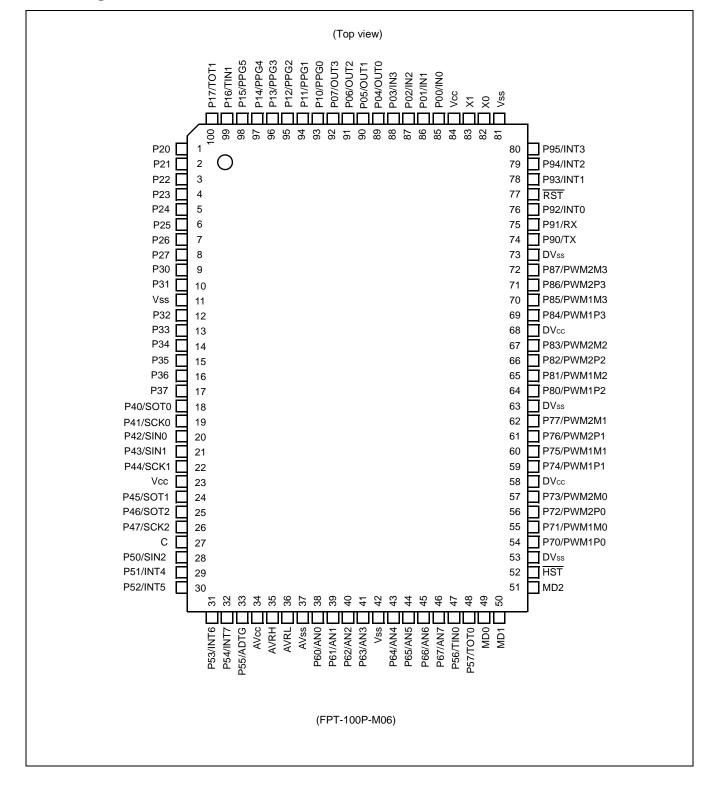
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

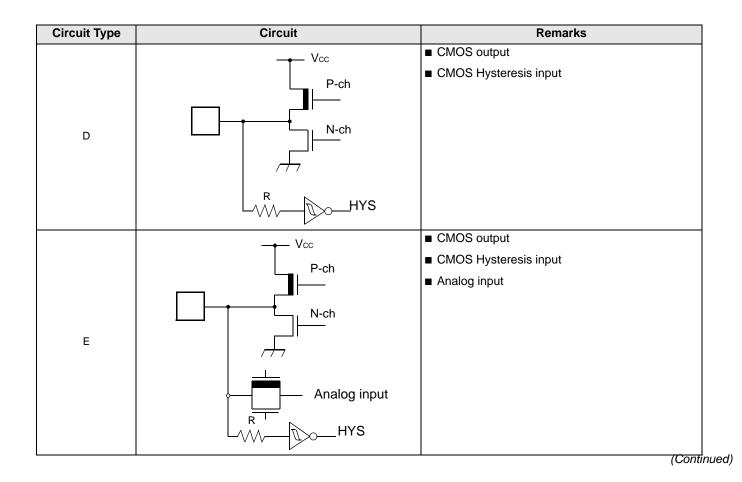
Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	14
Memory Space	
I/O Map	
Can Controller	
List of Control Registers	23
List of Message Buffers (ID Registers)	
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

Electrical Characteristics	31
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	45
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	

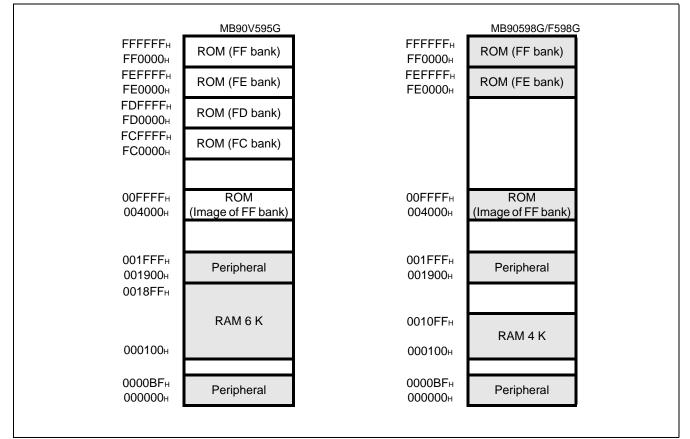
Features	MB90598G	MB90F598G	MB90V595G			
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW					
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel					
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input.				
Serial IO	Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first					
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms				
Flash Memory	Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics. Inc.					
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by					
Process	CMOS					
Power supply voltage for opera- tion*2	+5 V±10 %					
Package	QFP-100 PGA-256					


*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.


*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

2. Pin Assignment


Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _W HYS	
		■ CMOS output
	Vcc	CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
	N-ch	
G		
Ũ		
	R	
	HYS	
	R	
		 Hysteresis input
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
		(except MB90F598G)
н		
	R	
	· · · ·	

7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

Address	Register	Abbreviation	Access	Peripheral	Initial value				
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1B				
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001B				
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0B				
4Fн	Reserved								
50н	Timer Control Status Register 0	TMCSR0	R/W		00000000 _B				
51 н	Timer Control Status Register 0	TMCSR0	R/W	16-bit Deleged Timer 0	0 0 0 0 _B				
52 н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B				
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B				
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$				
55 H	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B				
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB				
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B				
58 H	Output Compare Control Status Register 0	OCS0	R/W	Output Compare 0/1	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$				
59н	Output Compare Control Status Register 1	OCS1	R/W		00000 _B				
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 0 _B				
5В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000B				
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000				
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B				
5 Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B				
5Fı		Reserved							
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$				
61н		Reserved							
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$				
63н		Reserved							
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B				
65 H		Reserved							
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0 _B				
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000				
68 H	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 0 _B				
69н to 6Ен		Reserved			(Conti				

Address	Register	Abbreviation	Access	Peripheral	Initial value
6 F н	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70 н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXAB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXAB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 0 _B
74 H	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXXAB
75 н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXXAB
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 0 _B
78 H	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000B
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W	Stepping Motor Controller 3	XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W		XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W		000000B
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controll	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0 _B
9 F н	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0
АОн	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	00011000в
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100в
A2н to A7н		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	ХХХХХ 1 1 1в
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAH to ADH		Reserved			•
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 _B
AFн		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111
В1н	Interrupt Control Register 01	ICR01	R/W	Interrupt controller	00000111в
В2н	Interrupt Control Register 02	ICR02	R/W		00000111в
В3н	Interrupt Control Register 03	ICR03	R/W		00000111в
В4н	Interrupt Control Register 04	ICR04	R/W		00000111в
В 5н	Interrupt Control Register 05	ICR05	R/W		00000111
В6н	Interrupt Control Register 06	ICR06	R/W		00000111в
В7н	Interrupt Control Register 07	ICR07	R/W		00000111
В8 н	Interrupt Control Register 08	ICR08	R/W		00000111
В 9н	Interrupt Control Register 09	ICR09	R/W		00000111
ВАн	Interrupt Control Register 10	ICR10	R/W	Interrupt controller	00000111
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111
BDн	Interrupt Control Register 13	ICR13	R/W		00000111
ВЕн	Interrupt Control Register 14	ICR14	R/W		00000111
BFн	Interrupt Control Register 15	ICR15	R/W		00000111
C0н to FFн		Rese	rved		
1900 н	Reload Register L	PRLL0	R/W		XXXXXXXXAB
1901 _H	Reload Register H	PRLH0	R/W	16-bit Programmable	XXXXXXXXAB
1902 н	Reload Register L	PRLL1	R/W	Pulse Generator 0/1	XXXXXXXXAB
1903 _H	Reload Register H	PRLH1	R/W		XXXXXXXXAB
1904 _H	Reload Register L	PRLL2	R/W		XXXXXXXXAB
1905 ^{_H}	Reload Register H	PRLH2	R/W	16-bit Programmable	XXXXXXXXAB
1906 ^{_H}	Reload Register L	PRLL3	R/W	Pulse Generator 2/3	XXXXXXXXAB
1907 _H	Reload Register H	PRLH3	R/W		XXXXXXXXAB
1908 _H	Reload Register L	PRLL4	R/W		XXXXXXXXAB
1909 ^{_H}	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXXAB
190Aн	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXX
190Bн	Reload Register H	PRLH5	R/W		XXXXXXXX
190Cн	Reload Register L	PRLL6	R/W		XXXXXXXX
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXXB
190Eн	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXXAB
190Fн	Reload Register H	PRLH7	R/W		XXXXXXXXAB

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX
1911н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXX
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX
1914 _H	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1915 _H	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX _B
1916 _H	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1917 н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX _B
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXX _B
1921н	Input Capture Register 0 (high-order)	IPCP0	R	Input Capture 0/1	XXXXXXXXAB
1922н	Input Capture Register 1 (low-order)	IPCP1	R		XXXXXXXX _B
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX _B
1924 н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX
1925н	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXX
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX
1927 н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX
1928 _H	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W	Output Compare 0/1	XXXXXXXX
192Ан	Output Compare Register 1 (low-order)	OCCP1	R/W		XXXXXXXX
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX
1930н to 19FFн		Re	served		
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1B00н to 1BFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1C00H to $1EFFH$		Re	served		
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB
1FF6н to 1FFFн		Re	served		

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

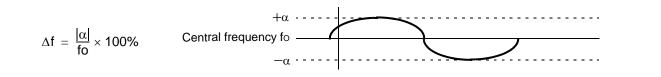
Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

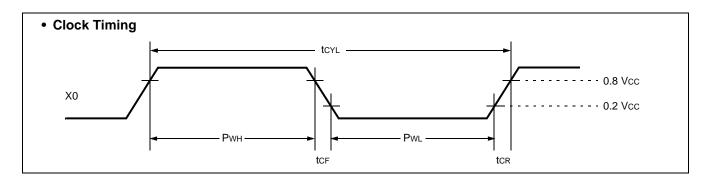
Address	Register	Abbreviation	Access	Initial Value
001A40н				
001A41н	ID register 8	IDR8	R/W	XXXXXXXX XXXXXXXXB
001A42н		IDRo	17/17	XXXXX XXXXXXXXB
001А43н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
001A44н				XXXXXXXX XXXXXXXXB
001A45н	ID register 9	IDR9	R/W	
001A46н		ibito	10,11	XXXXX XXXXXXXXB
001A47н				
001A48н				XXXXXXXX XXXXXXXB
001A49н	ID register 10	IDR10	R/W	
001А4Ан		IBI(10	10,11	XXXXX XXXXXXXXB
001A4Bн				
001A4Cн	-			XXXXXXXX XXXXXXXxB
001A4Dн	ID register 11	IDR11	R/W	
001A4Eн				XXXXX XXXXXXXXB
001A4Fн				
001А50н				XXXXXXXX XXXXXXXxB
001А51н	ID register 12	IDR12	R/W	
001А52н				XXXXX XXXXXXXXB
001А53н				
001А54н	4			XXXXXXXX XXXXXXXX
001А55н	ID register 13	IDR13	R/W	
001А56н	4			XXXXX XXXXXXXXB
001А57н				
001А58н	4			XXXXXXXX XXXXXXXXB
001А59н	ID register 14	IDR14	R/W	
001A5AH	4			XXXXX XXXXXXXXB
001А5Вн				
001A5CH	4			XXXXXXXX XXXXXXXXX
001A5DH	ID register 15	IDR15	R/W	
001А5Eн	4			XXXXX XXXXXXXX _B
001А5Fн				

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value
001A60н		DI ODO	D 444	~~~~~
001А61 н	DLC register 0	DLCR0	R/W	XXXXB
001A62н			DAA	
001A63н	DLC register 1	DLCR1	R/W	ХХХХв
001A64н			DAA	VVV-
001A65н	DLC register 2	DLCR2	R/W	ХХХХв
001A66н	- DLC register 3	DLCR3	R/W	ХХХХв
001А67 н	DLC register 3	DLCR3	R/VV	XXXAB
001A68н	DLC register 4		DAM	
001A69н	DLC register 4	DLCR4	R/W	ХХХХв
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв
001A6Bн	DLC register 5	DLCRS	r./vv	
001A6Cн	DLC register 6	DLCR6	R/W	ХХХХв
001A6DH	DLC register o	DLCRO	r./vv	
001A6Eн	DLC register 7		DAM/	XXXXB
001A6Fн		DLCR7 R/W		
001А70 н	DLC register 8	DLCR8	R/W	XXXX
001A71 н	DLC register o	DECKO		^
001А72 н	DLC register 9	DLCR9	R/W	XXXXB
001А73 н	DLC register 9	DLCK9	FN/ V V	
001A74н	DLC register 10	DLCR10	R/W	XXXXB
001A75н		DECKTO	10/00	
001A76н	DLC register 11	DLCR11	R/W	XXXXB
001А77 н		DECKT	10/00	
001A78н	DLC register 12	DLCR12	R/W	XXXXB
001A79н		DEORTZ	10,00	
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB
001A7Bн		DEORIG		
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв
001A7DH		DLOR 14		
001A7Eн	DLC register 15	DLCR15	R/W	ХХХХв
001A7Fн		DEORIG		/////6
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB

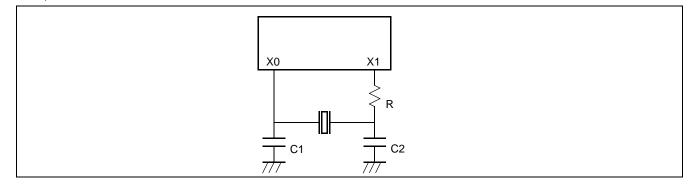
(Continued)			(Vcc =	5.0 V±10%	%, Vss = A	Vss = 0.0) V, TA =	= -40 °C to +8
Denemeter	Cumhal	Din manua	Condition		Value	Unit	Remarks	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Nemark5
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
		P70 to P87	_	—	15	30	pF	
Pull-up resistance	Rup	RST	_	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ	


*: The power supply current testing conditions are when using the external clock.

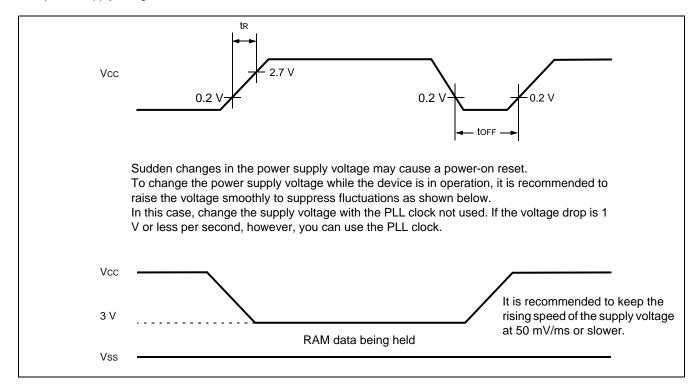

11.4 AC Characteristics

11.4.1 Clock Timing

				(Vcc = 5	.0 V±10%	%, Vss =	AVss = 0.0 V, $T_A = -40$ °C to +8
Parameter	Symbol	Pin name		Value			Remarks
Faidilielei	Symbol	Fin name	Min	Тур	Max	Unit	Reindiks
Oscillation frequency	fc	X0, X1	3	—	5	MHz	When using oscillation circuit
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock
Frequency deviation with PLL *	Δf	—	—	—	5	%	
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcr, tcr	X0	—	—	5	ns	When using external clock
Machine clock frequency	fср	—	1.5	—	16	MHz	
Machine clock cycle time	tcp	—	62.5	—	666	ns	
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU


*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

Example of Oscillation circuit

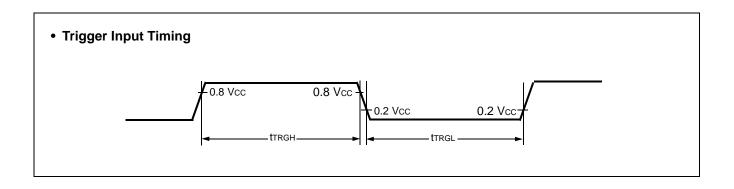

11.4.3 Power On Reset

11.4.3 FOWER ON RESEL	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$									
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks			
Falameter	Symbol	Fin hame	Condition	Min	Max	Unit	Nellia KS			
Power on rise time	tR	Vcc		0.05	30	ms	*			
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation			

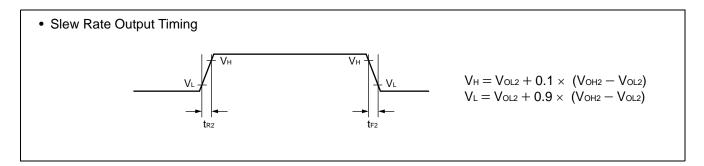
*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.

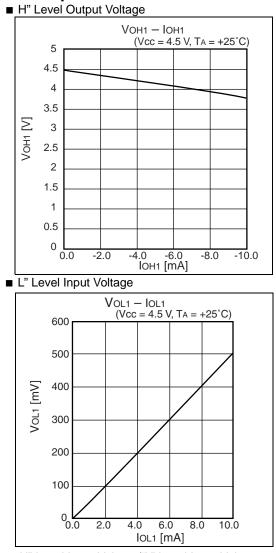


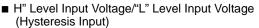
11.4.4 UART0/1, Serial I/O Timing

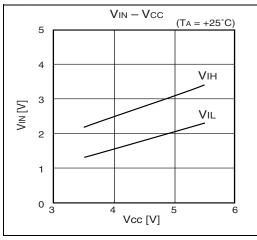

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

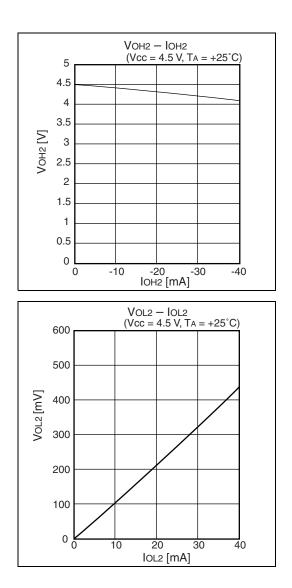
Parameter	Symbol Pin name		Condition	Value		Unit	Remarks
raianicici	Symbol	Finnanie	Condition	Min	Max	Onit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT \ delay \ time$	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100	_	ns	
$SCK\uparrow\RightarrowValid\;SIN\;hold\;time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60		ns	

11.4.6 Slew Rate High C	urrent Outpu	ıts (MB90598G, MB			0 %, Vss =	AVss = 0.	0 V, Ta :	= -40 °C to +8	35 °C)
Parameter	Symbol	Pin name	Condition	Min	Value Typ	Max	Unit	Remarks	
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		


11.5 A/D Converter


 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$


Parameter	Sym-	Pin name	Value				Remarks
Faiameter	bol	Fill hame	Min	Min Typ		Unit	Remarks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	_	±5.0	LSB	
Nonlinearity error	_	—	_	_	±2.5	LSB	
Differential linearity error	—	—	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	—	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	



12. Example Characteristics

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
-	Deleted the old products, MB90598, MB90F598, and MB90V595.
-	Changed the series name; MB90595/595G series ? MB90595G series
-	Changed the following erroneous name. I/O timer \rightarrow 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode \rightarrow Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date ** _ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. *A 5537128 AKIH 11/30/2016 Updated to Cypress template

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	com/arm
Automotive cypress.com/au	tomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	interface
Internet of Things cypress	s.com/iot
Lighting & Power Control cypress.com/po	werpsoc
Memory cypress.com	/memory
PSoC cypress.c	om/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.