

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

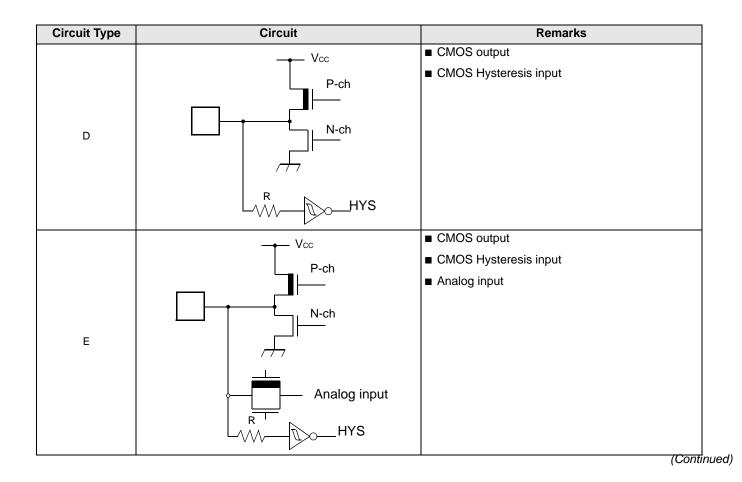
Details

E·XFI

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-142-bnd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


3. Pin Description

Pin no.	Pin name	Circuit type	Function				
82	X0	٨					
83	X1	A	Oscillator pin				
77	RST	В	Reset input				
52	HST	С	Hardware standby input				
85 to 88	P00 to P03	G	General purpose IO				
00 10 00	IN0 to IN3	6	Inputs for the Input Captures				
89 to 92	P04 to P07	G	General purpose IO				
09 10 92	OUT0 to OUT3	9	Outputs for the Output Compares.				
93 to 98	P10 to P15	D	General purpose IO				
93 10 98	PPG0 to PPG5	d	Outputs for the Programmable Pulse Generators				
99	P16	D	General purpose IO				
33	TIN1	d	TIN input for the 16-bit Reload Timer 1				
100	P17	D	General purpose IO				
100	TOT1	d	TOT output for the 16-bit Reload Timer 1				
1 to 8	P20 to P27	G	General purpose IO				
9 to 10	P30 to P31	G	General purpose IO				
12 to 16	P32 to P36	G	General purpose IO				
17	P37	D	General purpose IO				
18	P40	G	General purpose IO				
10	SOT0	0	SOT output for UART 0				
19	P41	G	General purpose IO				
19	SCK0	0	SCK input/output for UART 0				
20	P42	G	General purpose IO				
20	SIN0	0	SIN input for UART 0				
21	P43	G	General purpose IO				
21	SIN1	0	SIN input for UART 1				
22	P44	G	General purpose IO				
22	SCK1	0	SCK input/output for UART 1				
24	P45	G	General purpose IO				
24	SOT1	6	SOT output for UART 1				
25	P46	G	General purpose IO				
20	SOT2	5	SOT output for the Serial IO				
26	P47	G	General purpose IO				
20	SCK2	5	SCK input/output for the Serial IO				

Pin no.	Pin name	Circuit type	Function
20	P50	D	General purpose IO
28	SIN2	D	SIN Input for the Serial IO
29 to 32	P51 to P54	D	General purpose IO
291032	INT4 to INT7	D	External interrupt input for INT4 to INT7
33	P55	D	General purpose IO
	ADTG	ם	Input for the external trigger of the A/D Converter
38 to 41	P60 to P63	E	General purpose IO
30 10 41	AN0 to AN3	L	Inputs for the A/D Converter
43 to 46	P64 to P67	E	General purpose IO
43 10 40	AN4 to AN7	L	Inputs for the A/D Converter
47	P56	D	General purpose IO
47	TIN0	ם	TIN input for the 16-bit Reload Timer 0
48	P57	D	General purpose IO
40	ΤΟΤΟ	D	TOT output for the 16-bit Reload Timer 0
	P70 to P73		General purpose IO
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0
	P74 to P77		General purpose IO
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1
	P80 to P83		General purpose IO
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2
	P84 to P87		General purpose IO
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3
74	P90	5	General purpose IO
74	ТХ	D	TX output for CAN Interface
75	P91	6	General purpose IO
75	RX	D	RX input for CAN Interface

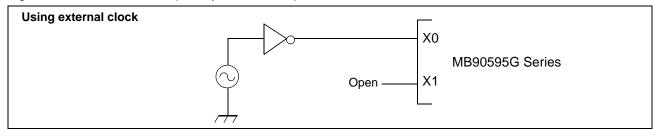
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

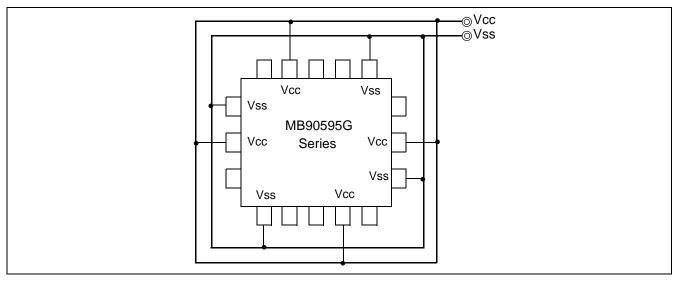

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

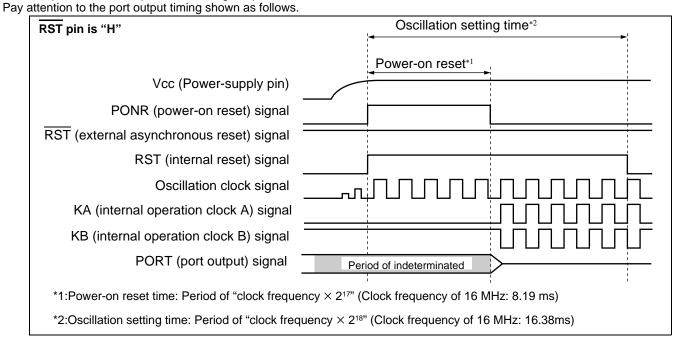
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at


50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		•
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1111111
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W	1	01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1B
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001B
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0B
4Fн		Reserved	•		
50н	Timer Control Status Register 0	TMCSR0	R/W		00000000 _B
51 н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0 0 0 0 _B
52 н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55 H	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58 H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000 _B
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 0 _B
5В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B
5 Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5FH		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65 H		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0 _B
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000
68 H	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 0 _B
69н to 6Ен		Reserved			(Conti

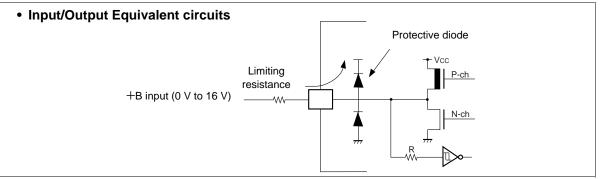
Address	Register	Abbreviation	Access	Peripheral	Initial value
6 F н	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70 н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXAB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXAB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 0 _B
74 H	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXXAB
75 н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXXAB
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 0 _B
78 H	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000B
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	000000B
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controll	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0 _B
9 F н	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0
АОн	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	00011000в
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100в
A2H to A7H		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	ХХХХХ 1 1 1в
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAH to ADH		Reserved			•
АЕн	Flash Memory Control Status Register (MB90F598G only. FMCS R/W Otherwise reserved)		Flash Memory	0 0 0 X 0 0 0 _B	
AFн		Reserved			

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value	
001A60н		DI ODO	D 444	~~~~~	
001А61 н	DLC register 0	DLCR0	R/W	XXXXB	
001A62н			DAA		
001A63н	DLC register 1	DLCR1	R/W	ХХХХв	
001A64н			DAA	VVV-	
001A65н	DLC register 2	DLCR2	R/W	ХХХХв	
001A66н	- DLC register 3	DLCR3	R/W	ХХХХв	
001А67 н	DLC register 3	DLCR3	R/VV	XXXAB	
001A68н	DLC register 4		DAM	VVV-	
001A69н	DLC register 4	DLCR4	R/W	ХХХХв	
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв	
001A6Bн	DLC register 5	DLCRS	r./vv		
001A6Cн	DLC register 6	DLCR6	R/W		
001A6DH	DLC register o	DLCRO	r./vv	ХХХХв	
001A6Eн	DLC register 7	DLCR7	R/W	XXXXB	
001A6Fн		DLCR7	r./vv		
001А70 н	DLC register 8	DLCR8	R/W	XXXX	
001A71 н	DLC register o	DECKO		^	
001А72 н	DLC register 9	DLCR9	R/W	XXXXB	
001А73 н	DLC register 9	DLCK9	FN/ V V		
001A74н	DLC register 10	DLCR10	R/W	XXXXB	
001A75н		DECKTO	10/00		
001A76н	DLC register 11	DLCR11	R/W	XXXXB	
001А77 н		DECKT	10/00		
001A78н	DLC register 12	DLCR12	R/W	XXXXB	
001A79н		DEORTZ	10,00		
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB	
001A7Bн		DEORIG			
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв	
001A7DH		DLOR 14			
001A7Eн	DLC register 15	DLCR15	R/W	XXXXB	
001A7Fн		DEORIG		/////6	
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB	

(Continued)

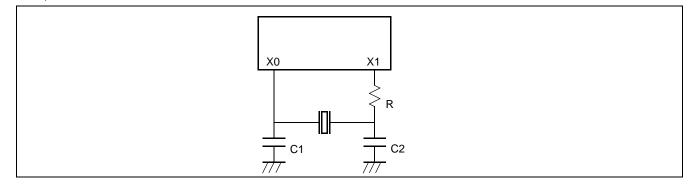
Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXxB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXB
001АВ0н to 001АВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXB
001AE8⊦ to 001AEF⊦	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXB



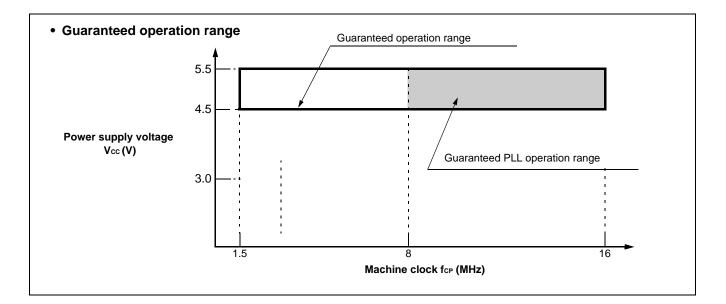
Notes:

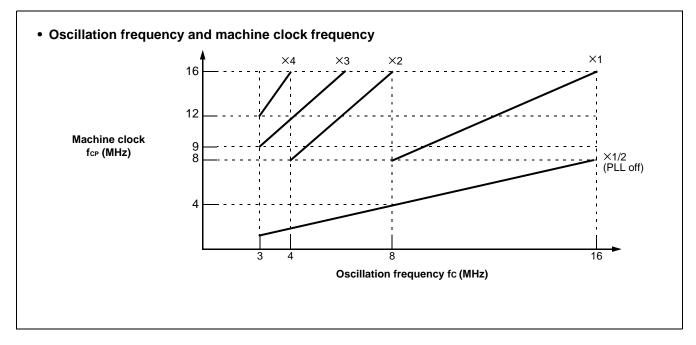
- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of EI²OS, the EI²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the EI²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the EI²OS clear signal caused by the first event. So it is recommended not to use the EI²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

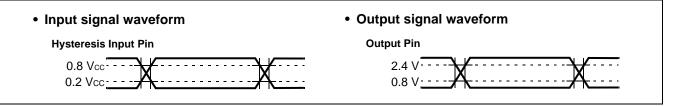


Note: : Average output current = operating current × operating efficiency

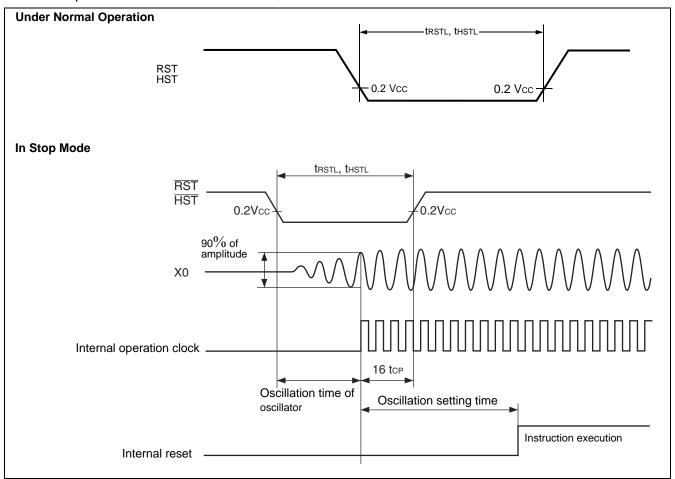

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



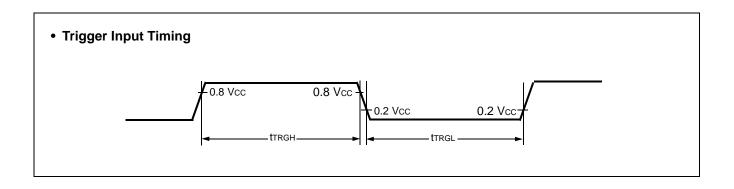
Example of Oscillation circuit



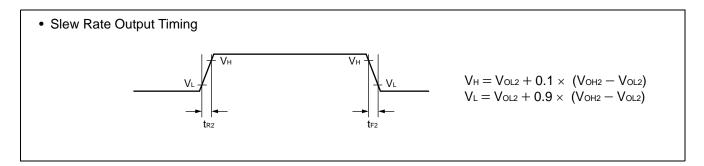
AC characteristics are set to the measured reference voltage values below.


11.4.2 Reset and Hardware Standby Input

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to}$									
Parameter	Symbol	Pin name	Value		Unit	Remarks			
Falametei	Symbol	Finitianie	Min	Max	Unit	Remarks			
Reset input time	t RSTL	RST	16 tcp*1	—	ns	Under normal operation			
			Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode			
			16 tcp*1	—	ns	Under normal operation			
Hardware standby input time	tнsт∟	HST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	—	ms	In stop mode			


*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

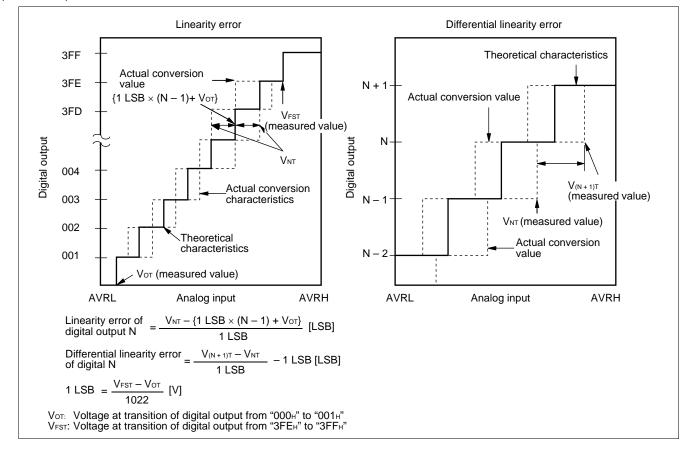

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) ($V_{CC} = 5.0 V \pm 10 \%$, $V_{SS} = AV_{SS} = 0.0 V$, $T_A = -40 \degree C$ to $+85 \degree C$)										
Parameter	Symbol	Pin name	Condition	Value Min Typ Max		Unit	Remarks			
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns			

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

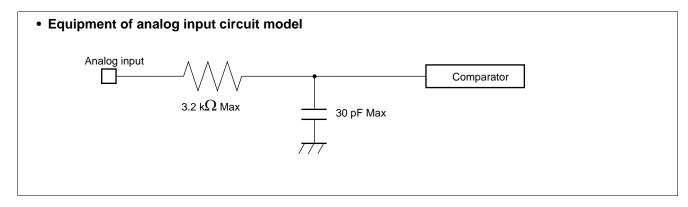
Parameter	Sym-	Pin name		Value	Unit	Remarks	
Faiameter	bol	Fin hame	Min	Тур	Max	Unit	Remarks
Resolution	—	—	—		10	bit	
Conversion error	—	—	—	_	±5.0	LSB	
Nonlinearity error	_	—	—	_	±2.5	LSB	
Differential linearity error	—	—	—	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	—	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	



Parameter	Sym-	Pin name	Value				Remarks
Faiametei	bol	Pin name	Min	Тур	Max	Unit	Reillarks
Reference voltage range	—	AVRH	AVRL + 3.0	—	AVcc	V	
Reference voltage range	—	AVRL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	_	5	—	mA	
	Іан	AVcc	_		5	μA	*
	lr	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
Reference voltage current			_	140	600	μA	MB90598G
	Irh	AVRH			5	μA	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

*: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

(Continued)

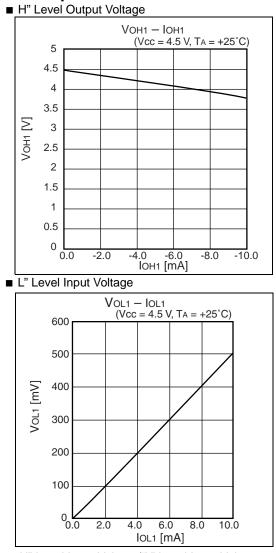


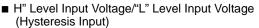
11.7 Notes on Using A/D Converter

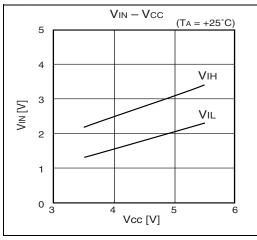
Select the output impedance value for the external circuit of analog input according to the following conditions,:

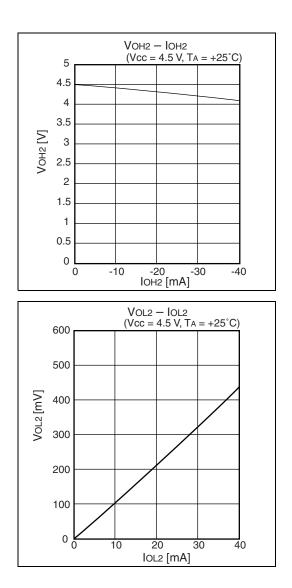
- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

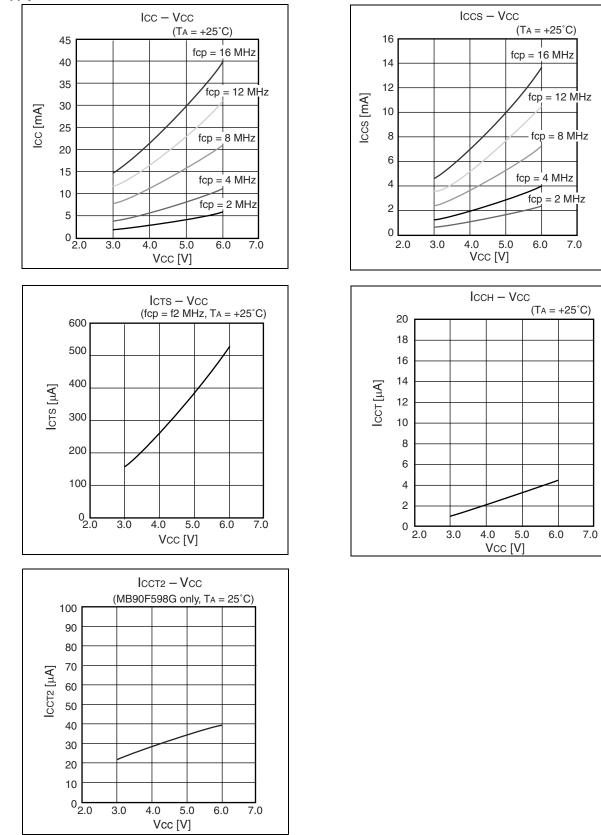



Error


The smaller the |AVRH - AVRL|, the greater the error would become relatively.



12. Example Characteristics



Supply Current

