

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-146-bnd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

	Features	MB90598G	MB90F598G	MB90V595G			
Classific	ation	Mask ROM product	Flash ROM product	Evaluation product			
ROM siz	e	128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None			
RAM size	e	4 Kbytes	4 Kbytes	6 Kbytes			
Emulator	r-specific power supply	-		None			
CPU fun	ctions	The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) Interrupt processing time: 1.5 µs (at machine clock frequency of 16 MHz, minimum value)					
UART0		Clock synchronized transmission (500 K/1 M/2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/slave connection.					
UART1(SCI)	Clock synchronized transmission (62.5 K/125 Clock asynchronized transmission (1202/240 Transmission can be performed by bi-directio	4/4808/9615/31250 bps)	ster/slave connection.			
8/10-bit /	A/D converter	Conversion precision: 8/10-bit can be selectiv Number of inputs: 8 One-shot conversion mode (converts selecte Scan conversion mode (converts two or more up to 8 chann Continuous conversion mode (converts select Stop conversion mode (converts selected cha	d channel once only) e successive channels and can p els) ted channel continuously)	0			
8/16-bit PPG timers Number of channels: 6 (8/16-bit × 6 channels) 8/16-bit PPG timers PPG operation of 8-bit or 16-bit (6 channels) A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2², fsys/2², fsys/2², fsys/2² (fsys = system clock frequency) 128μs (fosc = 4MHz: oscillation clock frequency)							
16-bit Re	eload timer	Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fs Supports External Event Count function	ys/2 ⁵ (fsys = System clock frequ	ency)			
16-bit	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare re	egister				
I/O tim- er	Input captures	Number of channels: 4 Rewriting a register value upon a pin input (ri	sing, falling, or both edges)				

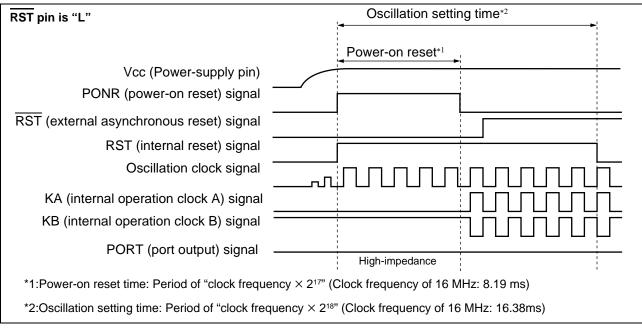
Features	MB90598G	MB90F598G	MB90V595G					
CAN Interface	Jumber of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Texible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW							
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel	ur high current outputs for each channel nchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	lumber of inputs: 8 itarted by a rising edge, a falling edge, an "H" level input, or an "L" level input.						
Serial IO		Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first						
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms						
Flash Memory	Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics. Inc.							
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch time	er/hardware stand-by						
Process		CMOS						
Power supply voltage for opera- tion*2	+	-5 V±10 %						
Package	QFP-100		PGA-256					

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

3. Pin Description


Pin no.	Pin name	Circuit type	Function			
82	X0	٨				
83	X1	A	Oscillator pin			
77	RST	В	Reset input			
52	HST	С	Hardware standby input			
85 to 88	P00 to P03	G	General purpose IO			
00 10 00	IN0 to IN3	6	Inputs for the Input Captures			
89 to 92	P04 to P07	G	General purpose IO			
09 10 92	OUT0 to OUT3	9	Outputs for the Output Compares.			
93 to 98	P10 to P15	D	General purpose IO			
93 10 98	PPG0 to PPG5	d	Outputs for the Programmable Pulse Generators			
99	P16	D	General purpose IO			
33	TIN1	d	TIN input for the 16-bit Reload Timer 1			
100	P17	D	General purpose IO			
100	TOT1	d	TOT output for the 16-bit Reload Timer 1			
1 to 8	P20 to P27	G	General purpose IO			
9 to 10	P30 to P31	G	General purpose IO			
12 to 16	P32 to P36	G	General purpose IO			
17	P37	D	General purpose IO			
18	P40	G	General purpose IO			
10	SOT0	0	SOT output for UART 0			
19	P41	G	General purpose IO			
19	SCK0	0	SCK input/output for UART 0			
20	P42	G	General purpose IO			
20	SIN0	0	SIN input for UART 0			
21	P43	G	General purpose IO			
21	SIN1	0	SIN input for UART 1			
22	P44	G	General purpose IO			
22	SCK1	0	SCK input/output for UART 1			
24	P45	G	General purpose IO			
24	SOT1	6	SOT output for UART 1			
25	P46	G	General purpose IO			
20	SOT2	5	SOT output for the Serial IO			
26	P47	G	General purpose IO			
20	SCK2	5	SCK input/output for the Serial IO			

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _W HYS	
		■ CMOS output
	Vcc	CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
	N-ch	
G		
Ũ		
	R	
	HYS	
	R	
		 Hysteresis input
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
		(except MB90F598G)
н		
	R	
	· · · ·	

(12) Initialization

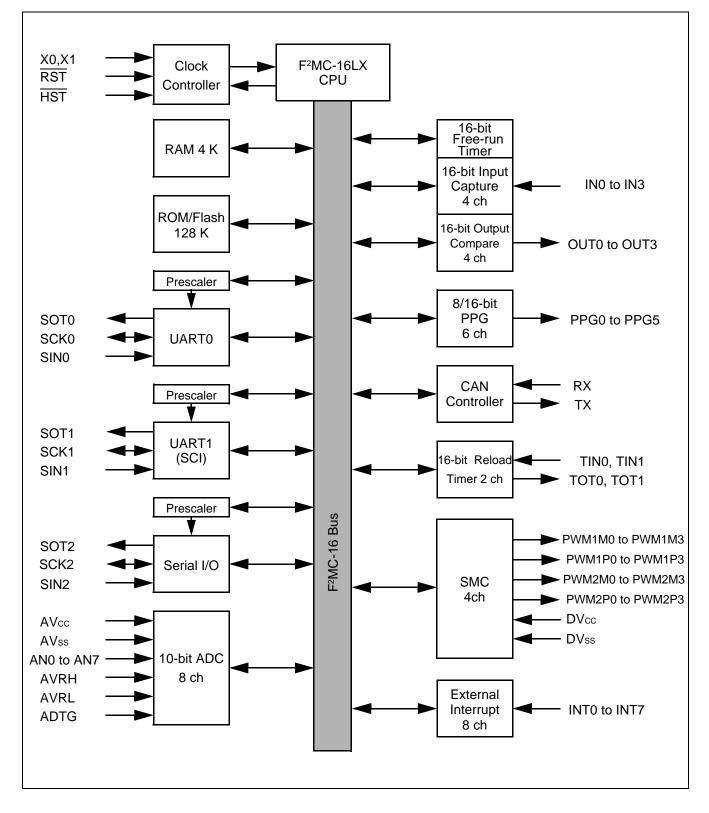
The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS


The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010в
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB
2 Fн	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		000000000
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	000000000
33н	External Interrupt Level Register	ELVR	R/W		000000000
34н	A/D Control Status Register 0	ADCS0	R/W		000000000
35н	A/D Control Status Register 1	ADCS1	R/W		000000000
36н	A/D Data Register 0	ADCR0	R	A/D Converter	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_000_1в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	00000в
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_000_1в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16 bit Brogrommoble	0_000_1в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	16-bit Programmable Pulse	0_00001в
42 H	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43н		Reserved			
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16 bit Drogrommakia	0_000_1в
45 H	PPG7 Operation Mode Control Register	PPGC7	R/W	16-bit Programmable Pulse	0_00001в
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	
47 н		Reserved		1	
48 H	PPG8 Operation Mode Control Register	PPGC8	R/W	16 bit Drogsommet L	0_000_1в
49 н	PPG9 Operation Mode Control Register	PPGC9	R/W	16-bit Programmable Pulse	0_00001в
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	
4Bн		Reserved		1	

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX
1911н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXX
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX _B
1914 _H	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1915 _H	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX _B
1916 _H	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1917 н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX _B
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXX _B
1921н	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXXAB
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXXX _B
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX _B
1924 н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX
1925н	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXX
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX
1927 н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX
1928 _H	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W		XXXXXXXX
192Ан	Output Compare Register 1 (low-order)	OCCP1	R/W	Output Compare 0/1	XXXXXXXX
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX

(Continued)

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Initial Value			
001A60н			D 444	~~~~~	
001А61 н	DLC register 0	DLCR0	R/W	XXXXB	
001A62н			DAA		
001A63н	DLC register 1	DLCR1	R/W	ХХХХв	
001A64н			DAA	VVV-	
001A65н	DLC register 2	DLCR2	R/W	ХХХХв	
001A66н	- DLC register 3	DLCR3	R/W	ХХХХв	
001А67 н	DLC register 3	DLCR3	R/VV	XXXAB	
001A68н	DLC register 4		DAM	VVV-	
001A69н	DLC register 4	DLCR4	R/W	ХХХХв	
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв	
001A6Bн	DLC register 5	DLCRS	r./vv		
001A6Cн	DLC register 6	DLCR6	R/W		
001A6DH	DLC register o	DLCRO	r./vv	XXXX _B	
001A6Eн	DLC register 7	DLCR7	R/W	ХХХХв	
001A6Fн		DLCR7	r./vv		
001А70 н	DLC register 8	DLCR8	R/W	XXXX	
001A71 н	DLC register o	DECKO		^	
001А72 н	DLC register 9	DLCR9	R/W	XXXXB	
001А73 н	DLC register 9	DLCK9	FN/ V V		
001A74н	DLC register 10	DLCR10	R/W	XXXXB	
001A75н		DECKTO	10/00		
001A76н	DLC register 11	DLCR11	R/W	XXXXB	
001А77 н		DECKT	10/00		
001A78н	DLC register 12	DLCR12	R/W	XXXXB	
001A79н		DEORTZ	10,00		
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB	
001A7Bн		DEORIG			
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв	
001A7DH		DLOR 14			
001A7Eн	DLC register 15	DLCR15	R/W	XXXXB	
001A7Fн		DEORIG		/////6	
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB	

(Continued)

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

	El ² OS	Interru	pt vector	Interrupt control register		
Interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8H			
Exception	N/A	# 10	FFFFD4H			
CAN RX	N/A	# 11	FFFFD0H	10000	0000000	
CAN TX/NS	N/A	# 12	FFFFCC _H	ICR00	0000В0н	
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10001	0000B1н	
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000011	
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	0000000	
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000В2н	
16-bit Free-run Timer	N/A	# 17	FFFFB8H	10000	0000000	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICR03	0000ВЗн	
Serial I/O	*1	# 19	FFFFB0H	ICR04	0000B4н	
External Interrupt (INT4/INT5)	*1	# 20	FFFFAC H	ICK04		
Input Capture 0	*1	# 21	FFFFA8H	ICR05	0000 B 5н	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICR05	0000638	
Output Compare 0	*1	# 23	FFFFA0H	ICR06	0000 В6 н	
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICRUO	OOODDOH	
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н	ICR07	0000 B7 н	
Input Capture 1	*1	# 26	FFFF94н		0000071	
8/16-bit PPG 4/5	N/A	# 27	FFFF90н	ICR08	0000B8н	
Output Compare 1	*1	# 28	FFFF8CH	101000	0000B0H	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICR09	0000 В 9н	
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000898	
8/16-bit PPG 8/9	N/A	# 31	FFFF80н	ICR10	0000ВАн	
Output Compare 2	*1	# 32	FFFF7C _H		UUUUDAH	
Input Capture 3	*1	# 33	FFFF78⊦	ICR11	0000BBн	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт	COCOBBA	
Output Compare 3	*1	# 35	FFFF70н	ICR12	0000BCH	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	0000000	
UART 0 RX	*2	# 37	FFFF68н	ICR13	0000BDн	
UART 0 TX	*1	# 38	FFFF64⊦		UUUUBDH	
UART 1 RX	*2	# 39	FFFF60н	ICR14	0000BEн	
UART 1 TX	*1	# 40	FFFF5C _H			
Flash Memory	N/A	# 41	FFFF58⊦	ICR15	0000BFн	
Delayed interrupt	N/A	# 42	FFFF54н		UUUUDI'H	

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

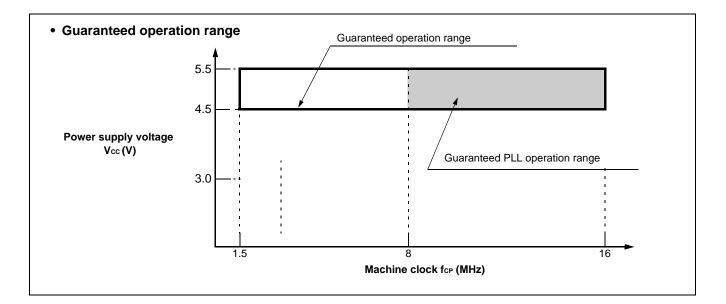
(Vss = AVss = 0.0 V)

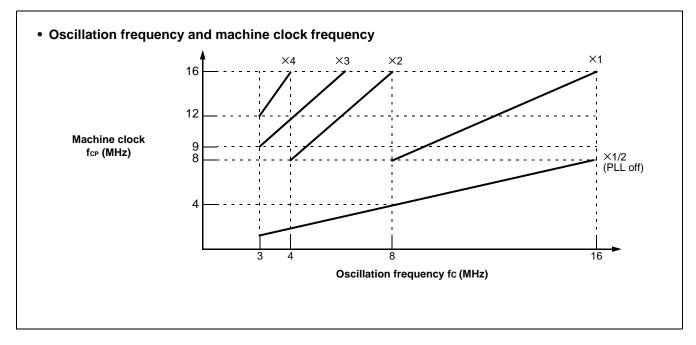
Parameter	Symbol	Rating		Unit	Remarks	
Parameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	V _{SS} - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vi	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Output voltage	Vo	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Maximum Clamp Current		-2.0	2.0	mA	*6	
Maximum Total Clamp Current	∑ Iclamp	—	20	mA	*6	
"L" level Max. output current	IOL1	_	15	mA	Normal output	*3
"L" level Avg. output current	IOLAV1	_	4	mA	Normal output, average value	*4
"L" level Max. output current	IOL2	_	40	mA	High current output	*3
"L" level Avg. output current	IOLAV2	_	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑lol1	_	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	—	330	mA	Total high current output	
"L" level Avg. overall output current	\sum IOLAV1	_	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	\sum Iolav2	_	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	_	-15	mA	Normal output	*3
"H" level Avg. output current	IOHAV1	_	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	_	-40	mA	High current output	*3
"H" level Avg. output current	IOHAV2	_	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	_	-100	mA	Total normal output	
"H" level Max. overall output current	∑Іон₂	_	-330	mA	Total high current output	
"H" level Avg. overall output current	∑lohav1	_	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑ I OHAV2	_	-250	mA	Total high current output, average value	*5
Power concumption	Pp	—	500	mW	MB90F598G	
Power consumption	PD	_	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

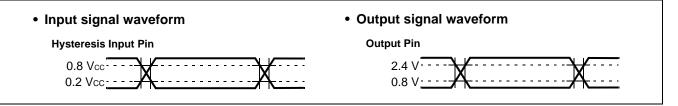
*2: VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3: The maximum output current is a peak value for a corresponding pin.

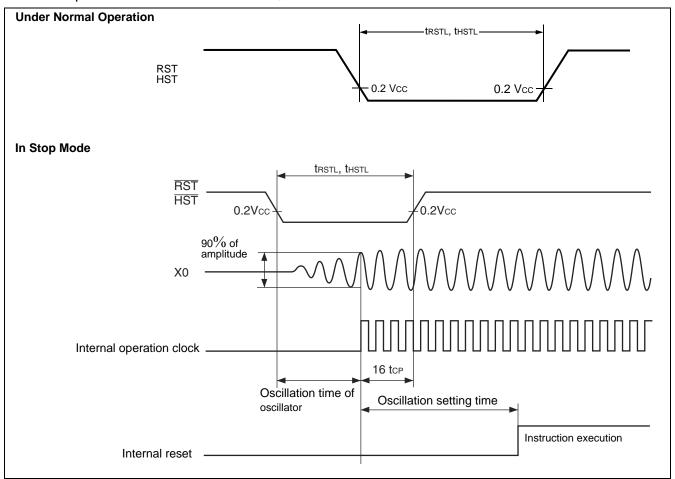

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.


*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

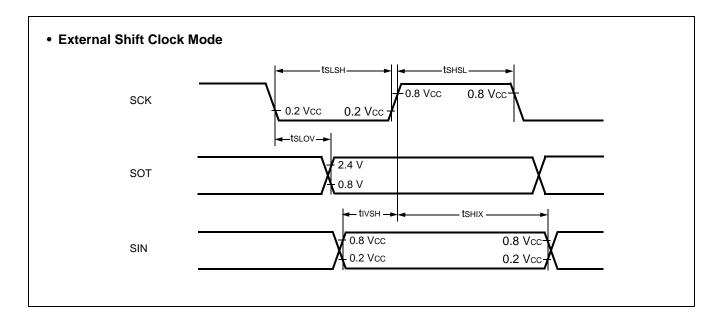
*6:


- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

AC characteristics are set to the measured reference voltage values below.

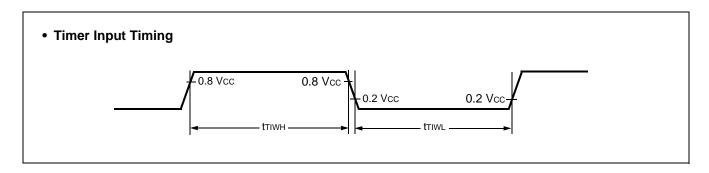

11.4.2 Reset and Hardware Standby Input

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$							
Parameter	Symbol	Pin name	Value		Unit	Remarks	
	Symbol	Finitianie	Min	Max	Unit	Reinarks	
Reset input time		trstl RST	16 tcp*1	—	ns	Under normal operation	
	t RSTL		Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode	
			16 tcp*1	—	ns	Under normal operation	
Hardware standby input time	tнsт∟	there HST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	—	ms	In stop mode	


*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.



(5) Timer Input Timing

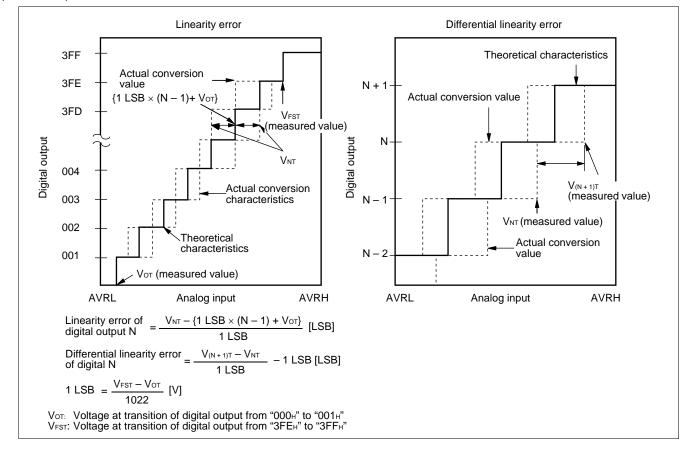
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Value		Remarks
Falameter	Symbol	Fin hame	Condition	Min	Max	Unit	Remarks
Input pulse width	tтіwн	TIN0, TIN1		4 t _{CP}		20	
mput puise width	t⊤ıw∟	IN0 to IN3		4 ICP	_	ns	

11.4.5 Trigger Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

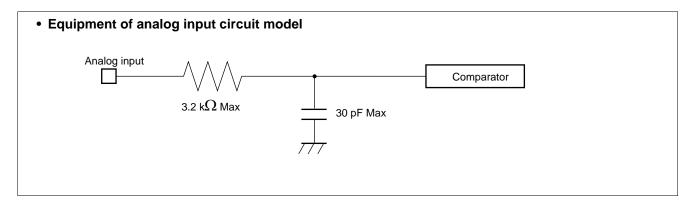
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
Farameter	Symbol	Fill Hallie	Condition	Min	Мах	Unit	Relliarks	
Input pulse width		INT0 to INT7,	_	5 tcp	_	ns	Under normal operation	
input puise width		ADTG		1		μs	In stop mode	



Parameter	Sym-	Pin name	Value				Remarks
Faiametei	bol	Fin hame	Min	Тур	Max	mA μA μA	Reillarks
Poforonoo voltago rango	—	AVRH	AVRL + 3.0	—	AVcc	V	
Reference voltage range	—	avrL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	_	5	—	mA	
	Іан	AVcc	_		5	μA	*
Reference voltage current	Ir	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
			_	140	600	μA	MB90598G
	Irh	AVRH	_		5	μA	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

*: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

(Continued)

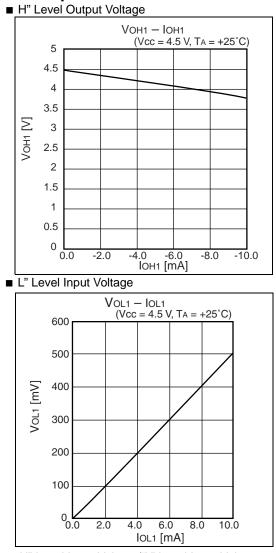


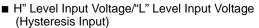
11.7 Notes on Using A/D Converter

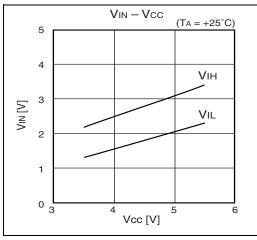
Select the output impedance value for the external circuit of analog input according to the following conditions,:

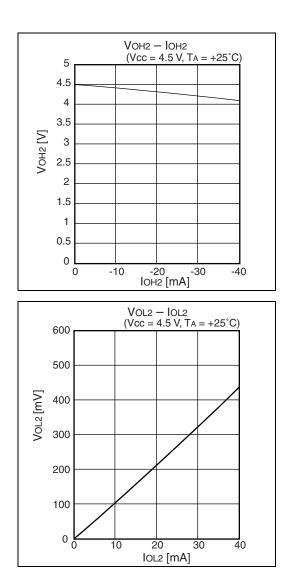
- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

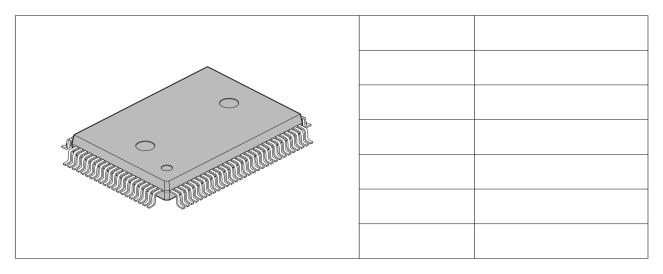


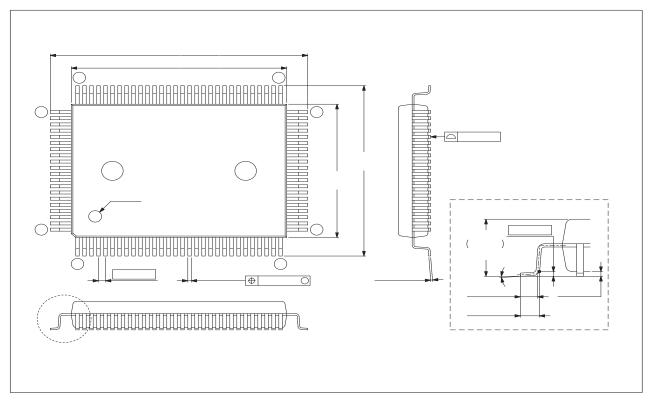

Error


The smaller the |AVRH - AVRL|, the greater the error would become relatively.



12. Example Characteristics





13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
-	Deleted the old products, MB90598, MB90F598, and MB90V595.
-	Changed the series name; MB90595/595G series ? MB90595G series
-	Changed the following erroneous name. I/O timer \rightarrow 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode \rightarrow Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date ** _ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. *A 5537128 AKIH 11/30/2016 Updated to Cypress template

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	oonii/anni
Automotive cypress.com/au	Itomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	/interface
Internet of Things cypres	s.com/iot
Lighting & Power Control cypress.com/pc	owerpsoc
Memory cypress.com	/memory
PSoC cypress.c	com/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	.com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.