

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-150

Contents

Pin Assignment	6
Pin Description	
1 III Description	_
I/O Circuit Type	ಶ
Handling Devices1	1
Block Diagram1	4
Memory Space1	
I/O Map10	6
Can Controller2	
List of Control Registers2	3
List of Message Buffers (ID Registers)2	
List of Message Buffers (DLC Registers and	
Data Registers) 2	7
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register2	9

Electrical Characteristics	31
Absolute Maximum Ratings	31
Recommended Conditions	33
DC Characteristics	33
AC Characteristics	35
A/D Converter	42
A/D Converter Glossary	44
Notes on Using A/D Converter	45
Flash memory	46
Example Characteristics	47
Ordering Information	49
Package Dimensions	49
Major Changes	

Circuit Type	Circuit	Remarks
D	Vcc P-ch N-ch HYS	■ CMOS output ■ CMOS Hysteresis input
E	P-ch N-ch Analog input HYS	 ■ CMOS output ■ CMOS Hysteresis input ■ Analog input

Document Number: 002-07700 Rev. *A

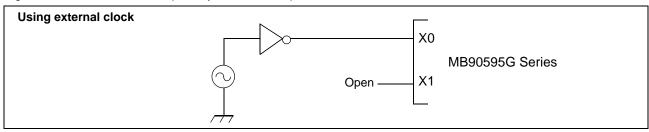
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

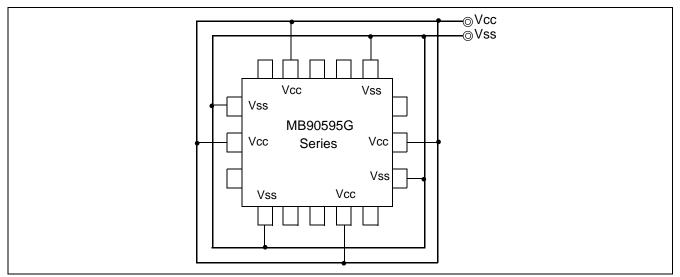

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least $2 \text{ k}\Omega$ resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{∞} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pins near the device.

Document Number: 002-07700 Rev. *A

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

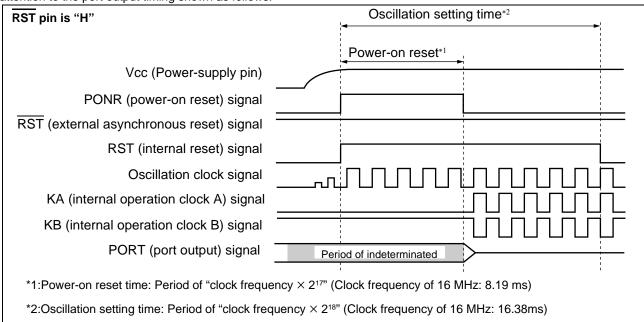
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

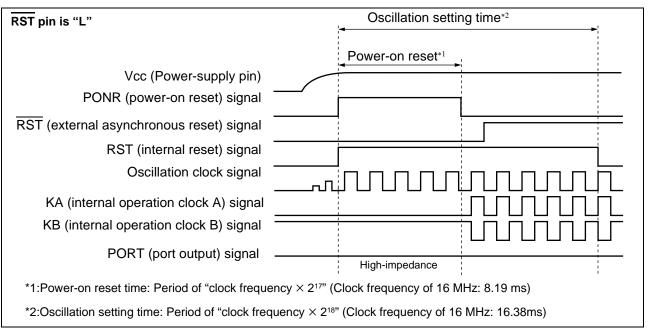
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.


(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu s$ or more (0.2 V to 2.7 V).


(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

- If RST pin is "H", the outputs become indeterminate.
- If RST pin is "L", the outputs become high-impedance. Pay attention to the port output timing shown as follows.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_0001в
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001в
4Ен	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0B
4 Fн		Reserved	l .	l	
50н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 0 0 0 0в
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000в
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXXB
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX
54н	Timer Control Status Register 1	TMCSR1	R/W		0 0 0 0 0 0 0 0 _B
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0000 _B
56н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB
57н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXXB
58н	Output Compare Control Status Register 0	OCS0	R/W	Output	0 0 0 0 0 0 _B
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000в
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 Ов
5Вн	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0 _B
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0в
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 Ов
5 Fн		Reserved	•		
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	0 0 0 0 0 0в
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	0 0 0 0 0 0в
63н		Reserved	ı		
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0в
65н		Reserved		<u>'</u>	
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 В
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	0 0 0 0 0 0 0 0 _B
68н	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 _B
69н to 6Eн		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
ВОн	Interrupt Control Register 00	ICR00	R/W		00000111в
В1н	Interrupt Control Register 01	ICR01	R/W	latera at controller	00000111в
В2н	Interrupt Control Register 02	ICR02	R/W	Interrupt controller	00000111в
ВЗн	Interrupt Control Register 03	ICR03	R/W		00000111в
В4н	Interrupt Control Register 04	ICR04	R/W		00000111в
В5н	Interrupt Control Register 05	ICR05	R/W		00000111в
В6н	Interrupt Control Register 06	ICR06	R/W		00000111в
В7н	Interrupt Control Register 07	ICR07	R/W	Interrupt controller	00000111в
В8н	Interrupt Control Register 08	ICR08	R/W		00000111в
В9н	Interrupt Control Register 09	ICR09	R/W		00000111в
ВАн	Interrupt Control Register 10	ICR10	R/W		00000111в
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111в
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111в
ВОн	Interrupt Control Register 13	ICR13	R/W		00000111в
ВЕн	Interrupt Control Register 14	ICR14	R/W		00000111В
ВГн	Interrupt Control Register 15	ICR15	R/W		00000111в
C0н to FFн		Resei	rved		
1900н	Reload Register L	PRLL0	R/W		XXXXXXXX
1901н	Reload Register H	PRLH0	R/W	16-bit Programmable Pulse	XXXXXXXX
1902н	Reload Register L	PRLL1	R/W	Generator 0/1	XXXXXXXX
1903н	Reload Register H	PRLH1	R/W		XXXXXXXX
1904н	Reload Register L	PRLL2	R/W		XXXXXXXX
1905н	Reload Register H	PRLH2	R/W	16-bit Programmable Pulse	XXXXXXXX
1906н	Reload Register L	PRLL3	R/W	Generator 2/3	XXXXXXXX
1907н	Reload Register H	PRLH3	R/W		XXXXXXXX
1908н	Reload Register L	PRLL4	R/W		XXXXXXXX
1909н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXX
190Ан	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXX
190Вн	Reload Register H	PRLH5	R/W		XXXXXXXX
190Сн	Reload Register L	PRLL6	R/W		XXXXXXXX
190Он	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXX
190Ен	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXXB
190Fн	Reload Register H	PRLH7	R/W		XXXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value		
192Сн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX		
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/3	XXXXXXXX		
192Ен	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX		
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX		
1930н to 19FFн	Reserved						
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller			
1В00н to 1ВFFн	CAN Controller. Refer to section about CAN Controller						
1С00н to 1EFFн		Re	served				
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX		
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXXB		
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX		
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX		
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX		
1FF5н	Program Address Detection Register 1 (high-order)				XXXXXXXXB		
1FF6н to 1FFFн		Re	served				

■ Description for Read/Write R/W : Readable/writable

R : Read only W : Write only

■ Description of initial value

0 : the initial value of this bit is "0".
1 : the initial value of this bit is "1".

X: the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

Address	Register	Abbreviation	Access	Initial Value	
001В08н	- IDE register	IDER	R/W	XXXXXXX XXXXXXX	
001В09н	TDE register	IDEN	TX/VV	XXXXXXXX XXXXXXXX	
001В0Ан	Transmit RTR register	TRTRR	R/W	0000000 00000000	
001В0Вн	Transmit ix rix register	TIVITAL	TX/VV	0000000 0000000в	
001В0Сн	Remote frame receive waiting register	note frame receive waiting register RFWTR R/W		XXXXXXX XXXXXXX	
001В0Dн	Tremote frame receive waiting register			XXXXXXXX XXXXXXXX	
001В0Ен	Transmit interrupt enable register	TIER	R/W	00000000 00000000В	
001В0Гн	Transmit interrupt enable register	HEK	IX/VV	OUUUUUU UUUUUUUB	
001В10н				XXXXXXX XXXXXXXX	
001В11н	Acceptance mask select register	AMSR	R/W	7//////////////////////////////////////	
001В12н		AWSK	IX/VV	XXXXXXX XXXXXXXX	
001В13н				**************************************	
001В14н				XXXXXXX XXXXXXXX	
001В15н	Acceptance mask register 0	AMR0	R/W	**************************************	
001В16н	Acceptance mask register 0	AIVIRU	K/VV	XXXXX XXXXXXXXB	
001В17н				**************************************	
001В18н				XXXXXXX XXXXXXX	
001В19н	Acceptance mask register 1	AMD.	544	AAAAAAA AAAAAAAAB	
001В1Ан	Acceptance mask register 1	AMR1	R/W	VVVVV VVVVVVV	
001В1Вн				XXXXX XXXXXXXXB	

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
001A00н to 001A1Fн	General-purpose RAM		R/W	XXXXXXXB to XXXXXXXXB
001А20н				XXXXXXX XXXXXXXB
001А21н	ID register 0	IDR0	R/W	^^^^^^
001А22н	Tib Tegister 0		XXXXX XXXXXXXXB	
001А23н				VVVV VVVVVVV
001А24н				XXXXXXX XXXXXXXB
001А25н	ID register 1	IDR1	R/W	^^^^^^^ ^^
001А26н	To register 1	IDICI	IX/VV	XXXXX XXXXXXXX _B
001А27н				XXXX XXXXXXXB
001А28н				XXXXXXX XXXXXXXB
001А29н	ID register 2	IDR2	R/M	AAAAAAAAAAAAAA
001А2Ан	To register 2	IDR2 R/W	17/ //	XXXXX XXXXXXXX _B
001А2Вн				VVVVV VVVVVVV

Address	Register	Abbreviation	Access	Initial Value		
001А2Сн				XXXXXXX XXXXXXXB		
001А2Dн	ID register 3	IDR3	R/W	**************************************		
001А2Ен	To register 3	IDIX5	17/77	XXXXX XXXXXXXX _B		
001А2Гн				XXXX XXXXXXXB		
001А30н				XXXXXXX XXXXXXXB		
001А31н	ID register 4	IDR4	R/W	AAAAAAA AAAAAAAA		
001А32н	ID register 4	Tegister 4	17/77	XXXXX XXXXXXXX _B		
001А33н				VVVV VVVVVVV		
001А34н				XXXXXXX XXXXXXXB		
001А35н	ID register 5	IDR5	R/W	AAAAAAA AAAAAAAA		
001А36н		IDIX9	IBNO INV	XXXXX XXXXXXXX _B		
001А37н				700000	XXXXX XXXXXXXXB	
001А38н				XXXXXXX XXXXXXXB		
001А39н	ID register 6	IDR6	R/W	AAAAAAA AAAAAAAA		
001А3Ан	To register 0	IDIO TOW	IDIO	IDIO	17/77	XXXXX XXXXXXXX _B
001А3Вн				VVVVV VVVVVVV		
001А3Сн				XXXXXXX XXXXXXXB		
001А3Дн	ID register 7	IDR7	R/W	7777777		
001А3Ен	In register /	IDK/	IX/ VV	XXXXX XXXXXXXXB		
001А3Гн				VVVV VVVVVVB		

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

lutarroot	El ² OS	Interru	pt vector	Interrupt control register	
Interrupt source	clear	Number	Address	Number	Address
Reset	N/A	# 08	FFFFDCH		
INT9 instruction	N/A	# 09	FFFFD8 _H		
Exception	N/A	# 10	FFFFD4 _H		
CAN RX	N/A	# 11	FFFFD0 _H	10000	000000
CAN TX/NS	N/A	# 12	FFFFCCH	ICR00	0000В0н
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10004	0000004
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000В1н
16-bit Reload Timer 0	*1	# 15	FFFFC0 _H	ICDOS	000000
8/10-bit A/D Converter	*1	# 16	FFFFBCH	ICR02	0000В2н
16-bit Free-run Timer	N/A	# 17	FFFFB8 _H	IODOO	000000
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4 _H	ICR03	0000ВЗн
Serial I/O	*1	# 19	FFFFB0н	ICD04	0000004
External Interrupt (INT4/INT5)	*1	# 20	FFFFACH	ICR04	0000В4н
Input Capture 0	*1	# 21	FFFFA8 _H	ICDOE	000000
8/16-bit PPG 0/1	N/A	# 22	FFFFA4 _H	ICR05	0000В5н
Output Compare 0	*1	# 23	FFFFA0 _H	ICDOC	000000
8/16-bit PPG 2/3	N/A	# 24	FFFF9C _H	ICR06	0000В6н
External Interrupt (INT6/INT7)	*1	# 25	FFFF98⊦	10007	0000В7н
Input Capture 1	*1	# 26	FFFF94 _H	ICR07	
8/16-bit PPG 4/5	N/A	# 27	FFFF90⊦	ICDOS	000000
Output Compare 1	*1	# 28	FFFF8C _H	ICR08	0000В8н
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICDOO	000000
Input Capture 2	*1	# 30	FFFF84 _H	ICR09	0000В9н
8/16-bit PPG 8/9	N/A	# 31	FFFF80 _H	ICD40	00000
Output Compare 2	*1	# 32	FFFF7C _H	ICR10	0000ВАн
Input Capture 3	*1	# 33	FFFF78 _H	ICR11	000000
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	ICKII	0000ВВн
Output Compare 3	*1	# 35	FFFF70⊦	ICD40	000000
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	ICR12	0000ВСн
UART 0 RX	*2	# 37	FFFF68⊦	ICP42	OOODD
UART 0 TX	*1	# 38	FFFF64 _H	ICR13	0000ВDн
UART 1 RX	*2	# 39	FFFF60 _H	ICB14	0000PF
UART 1 TX	*1	# 40	FFFF5C _H	ICR14	0000ВЕн
Flash Memory	N/A	# 41	FFFF58⊦	ICD45	00000
Delayed interrupt	N/A	# 42	FFFF54 _H	ICR15	0000ВFн

^{*1:} The interrupt request flag is cleared by the El²OS interrupt clear signal.

N/A:The interrupt request flag is not cleared by the El²OS interrupt clear signal.

^{*2:} The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Cumbal	Rat	ting	Unit	Remarks	
Parameter	Symbol	Min	Max	Unit		
	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V		*2
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V		*2
Maximum Clamp Current	ICLAMP	-2.0	2.0	mA	*6	
Maximum Total Clamp Current	Σ ICLAMP	_	20	mA	*6	
"L" level Max. output current	lo _{L1}	_	15	mA	Normal output	*3
"L" level Avg. output current	lolav1	_	4	mA	Normal output, average value	*4
"L" level Max. output current	lol2	_	40	mA	High current output	*3
"L" level Avg. output current	lolav2	_	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑ l ol1	_	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	_	330	mA	Total high current output	
"L" level Avg. overall output current	∑lolav1	_	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	∑lolav2	_	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	_	-15	mA	Normal output	*3
"H" level Avg. output current	lohav1	_	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	_	-40	mA	High current output	*3
"H" level Avg. output current	lohav2	_	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	_	-100	mA	Total normal output	
"H" level Max. overall output current	∑loн2	_	-330	mA	Total high current output	
"H" level Avg. overall output current	∑ I ohav1	_	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑Iohav2	_	-250	mA	Total high current output, average value	*5
Dower consumption	Pp	_	500	mW	MB90F598G	
Power consumption	PD	_	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Тѕтс	- 55	+150	°C		

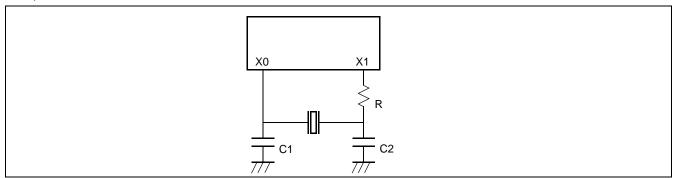
^{*1:} AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*6:

- Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

Document Number: 002-07700 Rev. *A

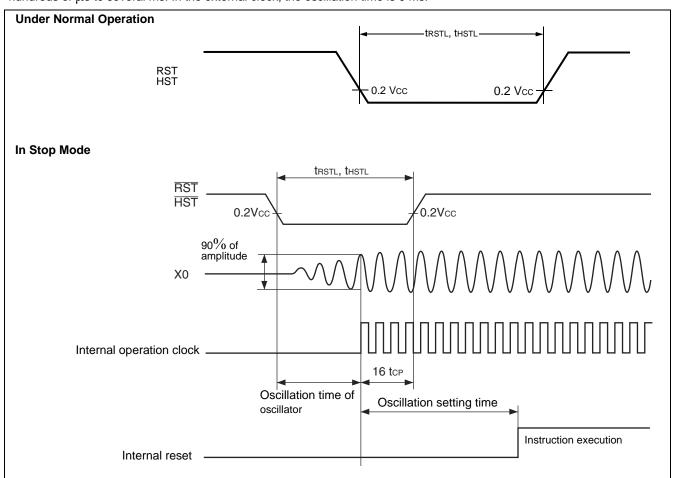
^{*2:} VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the VI rating.


^{*3:} The maximum output current is a peak value for a corresponding pin.

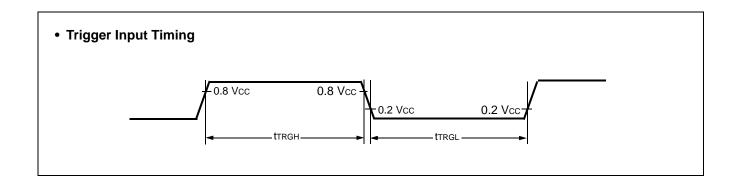
^{*4:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

■ Example of Oscillation circuit

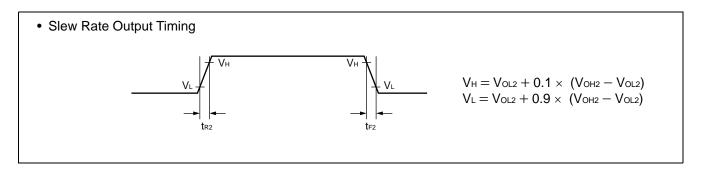

11.4.2 Reset and Hardware Standby Input

$(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40$	°C to -	+85 °C)
--	---------	---------


Parameter	Symbol	Pin name	Value		Unit	Remarks	
r ai ailletei	Symbol	Min Max		Oilit	Kemarks		
		RST	16 tcp*1		ns	Under normal operation	
Reset input time	t rstl		Oscillation time of oscillator*2 + 16 tcp*1	_	ms	In stop mode	
				16 tcp*1	_	ns	Under normal operation
Hardware standby input time	t HSTL	HST	Oscillation time of oscillator*2 + 16 tcp*1	_	ms	In stop mode	

^{*1: &}quot;t_{cp}" represents one cycle time of the machine clock.No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%.
In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.



11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only)

 $(Vcc = 5.0 V\pm 10 \%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Pin name			Value		Value		Remarks	
raiailletei	Syllibol	riii iiaiile	Condition	Min	Тур	Max		Iveillains		
Output Rise/Fall time	t _{R2}	Port P70 to P77, Port P80 to P87	_	15	40	150	ns			

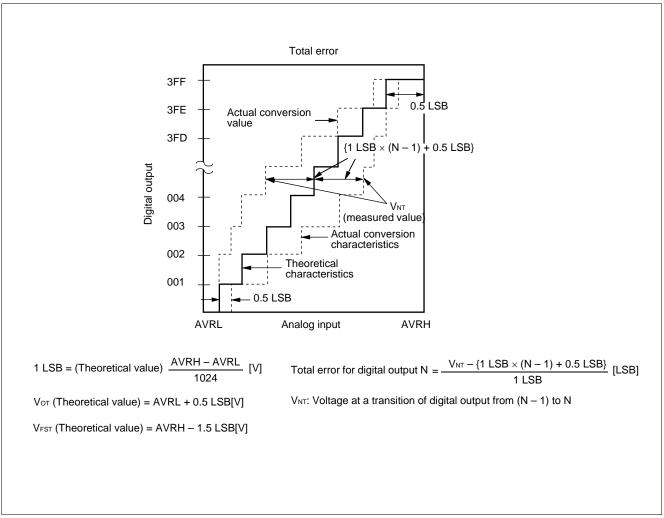
11.5 A/D Converter

(Vcc = AVcc = 5.0 V±10%, Vss = AVss = 0.0 V,3.0 V \leq AVRH - AVRL, T_A = -40 $^{\circ}$ C to +85 $^{\circ}$ C)

Parameter	Sym-	Pin name		Value	Unit	Remarks	
Parameter	bol	Pin name	Min	Min Typ			Unit
Resolution	_	_	_		10	bit	
Conversion error	_	_	_	_	±5.0	LSB	
Nonlinearity error	_	_	_	_	±2.5	LSB	
Differential linearity error	_	_	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	_	_	352tcp	_	ns	
Sampling time	_	_	_	64t cp	_	ns	
Analog port input current	Iain	AN0 to AN7	-10	_	10	μА	
Analog input voltage range	Vain	AN0 to AN7	AVRL		AVRH	V	

Parameter	Sym-	Pin name		Value	Unit	Remarks	
Parameter	bol	Fill Hallie	Min	Тур	Max	Onit	Remarks
Poforonco voltago rango	_	AVRH	AVRL + 3.0	_	AVcc	V	
Reference voltage range	_	AVRL	0	_	AVRH - 3.0	V	
Power supply current	lΑ	AVcc	_	5	_	mA	
	Іан	AVcc	_	_	5	μΑ	*
	IR	AVRH	_	400	600	μА	MB90V595G, MB90F598G
Reference voltage current			_	140	600	μΑ	MB90598G
	Iгн	AVRH		_	5	μΑ	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

^{*:} When not operating A/D converter, this is the current (Vcc = AVcc = AVRH = 5.0 V) when the CPU is stopped.



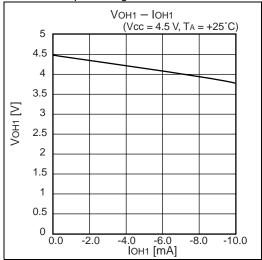
11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

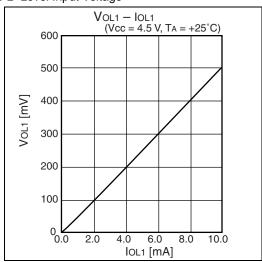
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

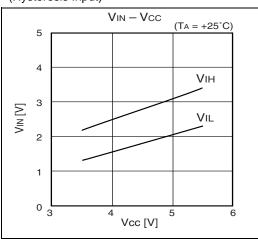
11.8 Flash memory

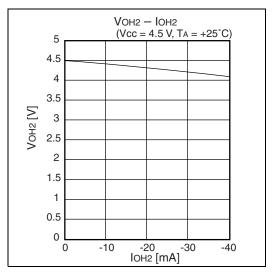

■ Erase and programming performance

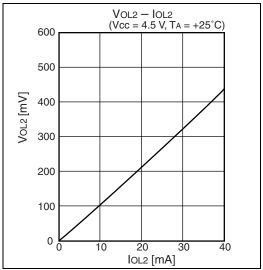
Parameter	Condition	Value			Unit	Remarks			
Parameter	Condition	Min	Тур				Nemarks		
Sector erase time		_	1	15	s	MB90F598G	Excludes 00H programming prior erasure		
Chip erase time	$T_A = +25$ °C, $V_{CC} = 5.0 \text{ V}$	_	5	_	S	MB90F598G	Excludes 00H programming prior		
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead		
Erase/Program cycle	_	10000	-	_	cycle				



12. Example Characteristics


■ H" Level Output Voltage




■ L" Level Input Voltage

■ H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
_	Deleted the old products, MB90598, MB90F598, and MB90V595.
_	Changed the series name; MB90595/595G series ? MB90595G series
_	Changed the following erroneous name. I/O timer → 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode → Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

	Document Title: MB90598G/F598G/V595G F ² MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700								
Revision	ECN	Orig. of Change	Submission Date	Description of Change					
**	_	AKIH	09/26/2008	Migrated to Cypress and assigned document number 002-07700. No change to document contents or format.					
*A	5537128	AKIH	11/30/2016	Updated to Cypress template					

Document Number: 002-07700 Rev. *A Page 50 of 51