

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

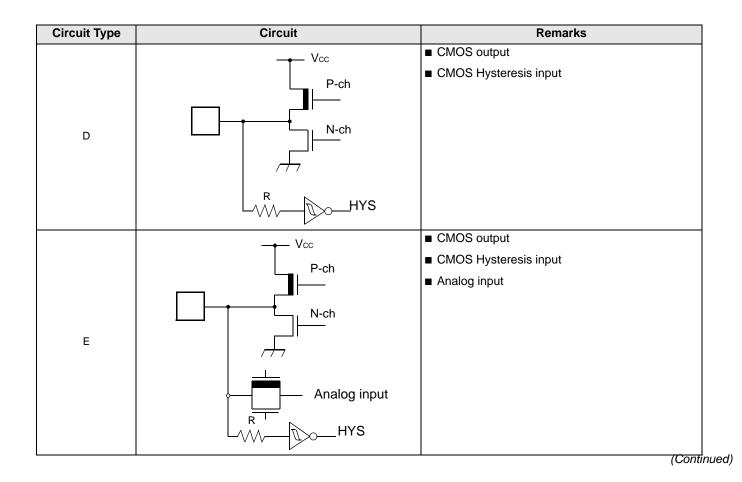
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	<u>.</u>
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-152

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Features	MB90598G	MB90F598G	MB90V595G				
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW						
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	evel input, or an "L" level input.					
Serial IO	Clock synchronized transmission (31.25 K/62.5 H freque LSB first/MSB first	K/125 K/500 K/1 Mbps at system ency of 16 MHz)	m clock				
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms					
Flash Memory	Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to poir Memory Boot block configuration Erase can be performed on each block	A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage					
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch time	er/hardware stand-by					
Process		CMOS					
Power supply voltage for opera- tion*2	+	-5 V±10 %					
Package	QFP-100		PGA-256				

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

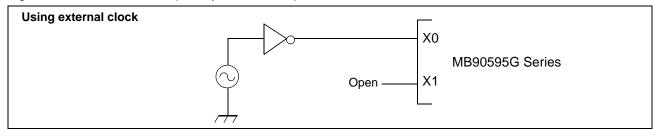
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

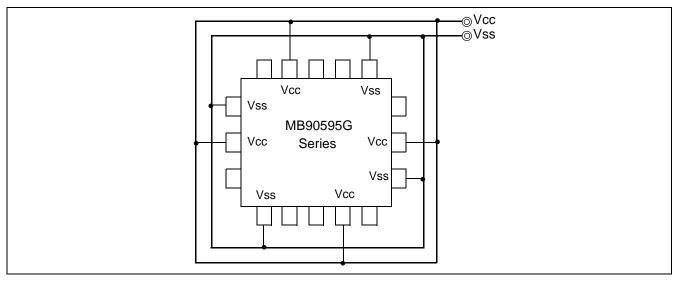

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

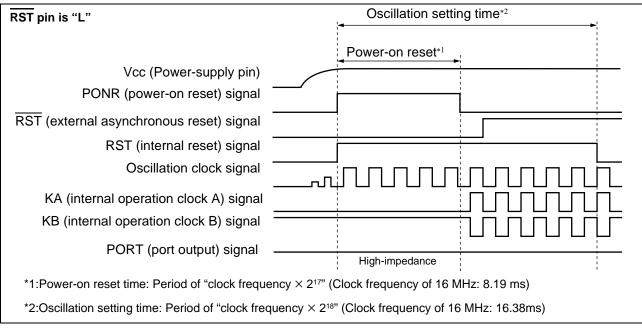
Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)


In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(12) Initialization

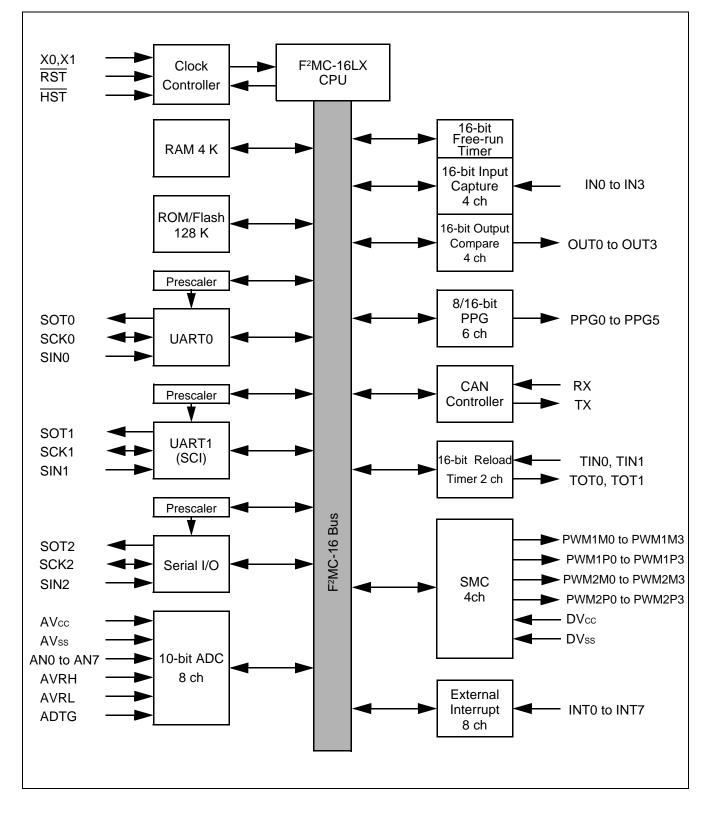
The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

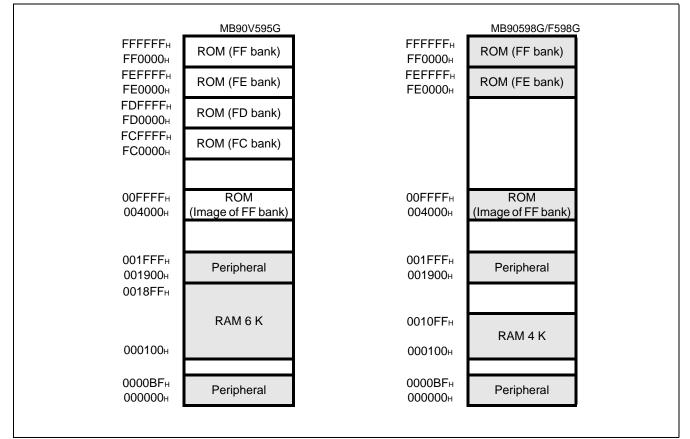
(14) Using REALOS


The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram



7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		•
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1111111
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W	1	01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1B
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001B
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0B
4Fн		Reserved	•		
50н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 0 0 0 0 0 _B
51 н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0 0 0 0 _B
52 н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55 H	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58 H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000 _B
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 0 _B
5В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B
5 Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5FH		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65 H		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0 _B
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000
68 H	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 0 _B
69н to 6Ен		Reserved			(Conti

(Continued)

Address	Register	Abbreviation	Access	Initial Value	
001B08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX	
001B09н		IDEIX	1.7, 4.4		
001В0Ан	Transmit RTR register	TRTRR	R/W	0000000 000000₀	
001В0Вн			1.7, 4.4	000000000000000000000000000000000000000	
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX	
001B0Dн		NEWIN			
001B0Eн	Transmit interrupt enable register	TIER	R/W	0000000 0000000B	
001B0Fн		HER	r./ vv	0000000 000000B	
001B10н			R/W	XXXXXXXX XXXXXXXX	
001B11н	Acceptance mask select register	AMSR			
001В12н		AWISK		XXXXXXXX XXXXXXXX	
001B13н					
001B14н				XXXXXXXX XXXXXXXX	
001B15⊦		AMRO	R/W	ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΒ	
001B16⊦	 Acceptance mask register 0 	AWRU	R/VV	XXXXX XXXXXXXXB	
001B17н				ХХХХХ ХХХХХХХХВ	
001B18⊦					
001B19⊦			DAA	XXXXXXXX XXXXXXXXXB	
001B1Aн	 Acceptance mask register 1 	AMR1	R/W		
001B1Bн				XXXXX XXXXXXXXB	

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value	
001А00н to 001А1Fн	General-purpose RAM		R/W	XXXXXXXXB to XXXXXXXB	
001A20н				XXXXXXXX XXXXXXXB	
001A21н	ID register 0	IDR0	R/W		
001A22н		IDRO		XXXXX XXXXXXXXB	
001А23н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
001A24н				XXXXXXXX XXXXXXXB	
001A25н	ID register 1	IDR1 R/W			
001A26н		IDRI		XXXXX XXXXXXXXB	
001А27 н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
001A28н				XXXXXXXX XXXXXXXB	
001A29н	ID register 2	IDR2	R/W		
001А2Ан		ΙΟΝΖ	FX/ V V	XXXXX XXXXXXXXB	
001А2Вн				^^^^~~ ^^^ ^	

Address	Register	Abbreviation	Access	Initial Value										
001A2Cн				XXXXXXXX XXXXXXXXB										
001A2Dн	ID register 3	IDR3	R/W											
001A2Eн		ibito	10,11	XXXXX XXXXXXXXB										
001A2Fн														
001А30н				XXXXXXXX XXXXXXXXB										
001A31н	ID register 4	IDR4	R/W											
001А32н		IDI(4		XXXXX XXXXXXXXB										
001А33н														
001А34н				XXXXXXXX XXXXXXXXB										
001A35н	ID register 5	IDR5	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
001A36н			1011	XXXXX XXXXXXXXB										
001А37н				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
001A38н	_	IDR6 R/V		XXXXXXXX XXXXXXXxxxxxxxxxxxxxxxxxxxxxx										
001А39н	ID register 6		6 IDR6 R/W	IDR6 R/W	R/W									
001АЗАн				1011	XXXXX XXXXXXXXB									
001А3Bн														
001А3Cн														XXXXXXXX XXXXXXXXB
001А3Dн	D register 7 IDR7 R/	R/W												
001А3Eн			10,00	XXXXX XXXXXXXXB										
001А3Fн				(Conti										

(Continued)

Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXXB
001АВ0н to 001АВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXB
001AE8⊦ to 001AEF⊦	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXB

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

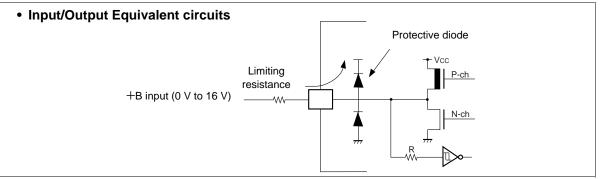
Parameter	Symbol	Rat	ting	Unit	Remarks	
Farameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vı	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Output voltage	Vo	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Maximum Clamp Current	ICLAMP	-2.0	2.0	mA	*6	
Maximum Total Clamp Current		—	20	mA	*6	
"L" level Max. output current	IOL1	_	15	mA	Normal output	*3
"L" level Avg. output current	OLAV1	—	4	mA	Normal output, average value	*4
"L" level Max. output current	IOL2	—	40	mA	High current output	*3
"L" level Avg. output current	OLAV2	—	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑lol1	—	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	—	330	mA	Total high current output	
"L" level Avg. overall output current	\sum IOLAV1	_	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	\sum Iolav2	—	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	_	—15	mA	Normal output	*3
"H" level Avg. output current	IOHAV1	_	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	_	-40	mA	High current output	*3
"H" level Avg. output current	IOHAV2	_	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	_	-100	mA	Total normal output	
"H" level Max. overall output current	∑Іон₂	_	-330	mA	Total high current output	
"H" level Avg. overall output current	∑lohav1	_	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑Iohav2	_	-250	mA	Total high current output, average value	*5
Power consumption	Pp	—	500	mW	MB90F598G	
	۳D	—	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*2: VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3: The maximum output current is a peak value for a corresponding pin.

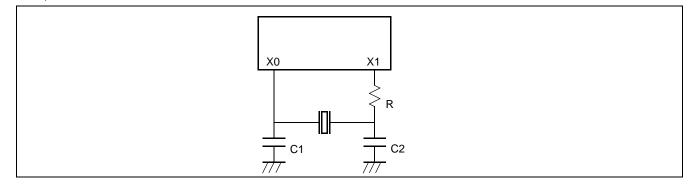
*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.


*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

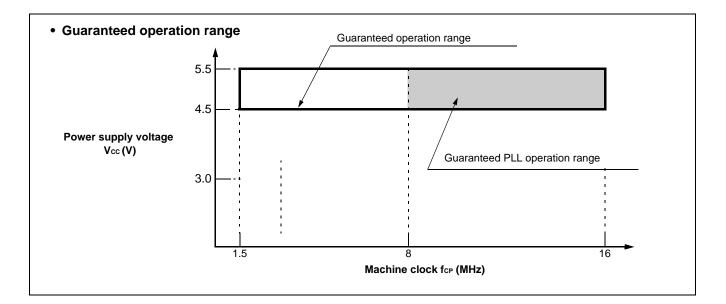
*6:

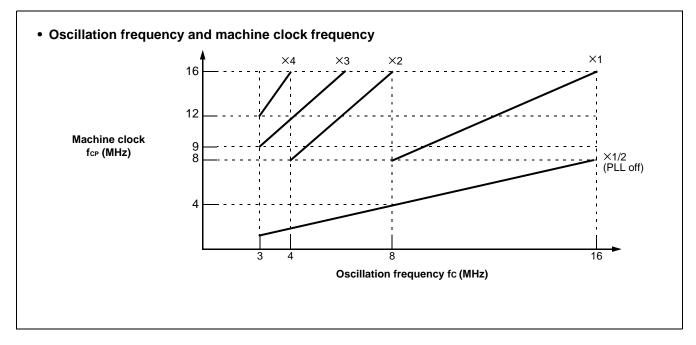
- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

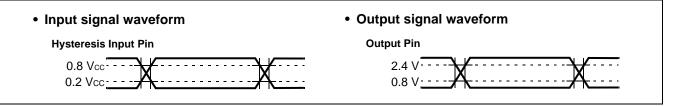


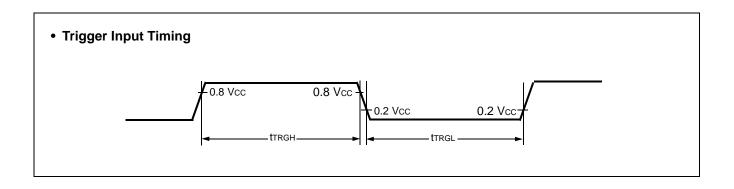
Note: : Average output current = operating current × operating efficiency

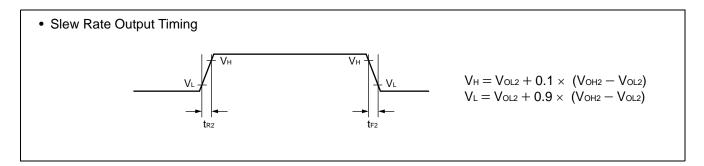

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



Example of Oscillation circuit






AC characteristics are set to the measured reference voltage values below.

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) ($Vcc = 5.0 V \pm 10 \%$, $Vss = AVss = 0.0 V$, $T_A = -40 °C$ to +85 °C)									
Parameter	Symbol	Pin name	Condition	Value Min Typ Max		Unit	Remarks		
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

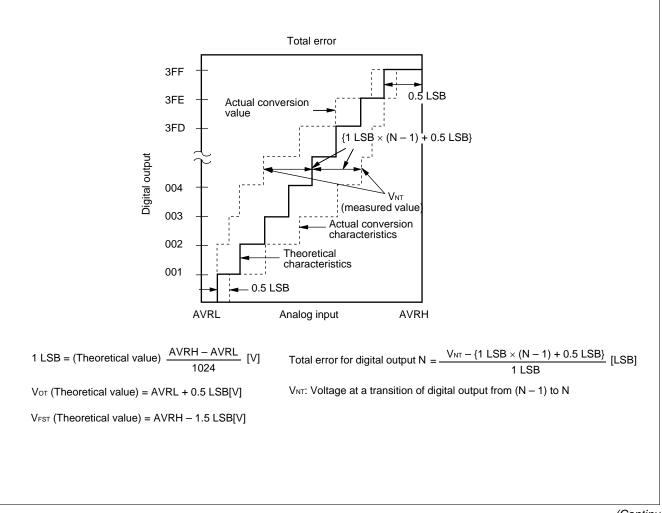
11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name	Value Unit	Value			Remarks
Faiameter	bol	Fin hame	Min	Тур	Max	Unit	Rellidiks
Resolution	—	—	—		10	bit	
Conversion error	—	—	—	_	±5.0	LSB	
Nonlinearity error	_	—	—	_	±2.5	LSB	
Differential linearity error	—	—	—	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	—	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	

Parameter	Sym-	Pin name		Value	Unit	Remarks	
Faiametei	bol	Fin hame	Min	Тур	Max	Unit	Reillarks
Reference voltage range	—	AVRH	AVRL + 3.0	—	AVcc	V	
Reference voltage range	—	AVRL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	_	5	—	mA	
	Іан	AVcc	_		5	μA	*
	lr	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
Reference voltage current			_	140	600	μA	MB90598G
	Irh	AVRH			5	μA	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

*: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

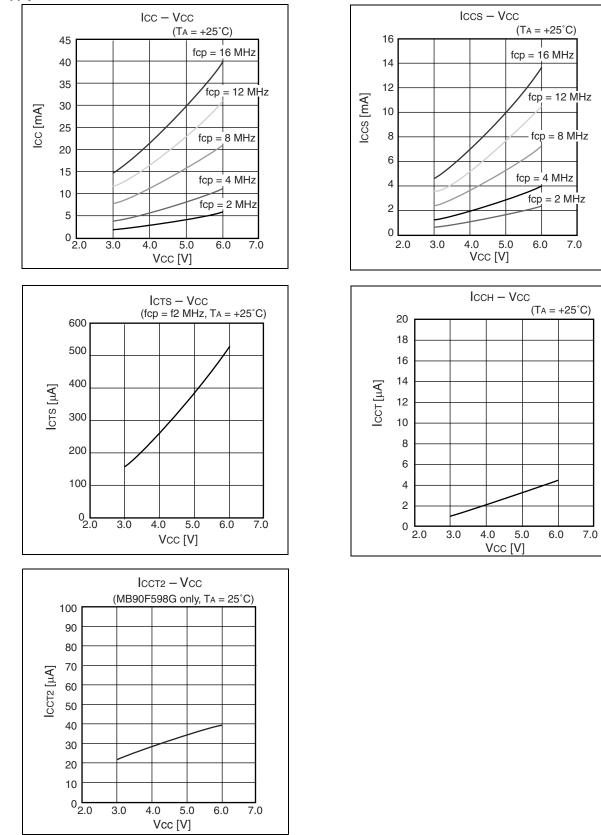

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.


11.8 Flash memory

■ Erase and programming performance

Parameter	Condition	Value			Unit	Remarks	
		Min	Тур	Max	Onit	Reinarks	
Sector erase time	$T_A = +25 \ ^{\circ}C,$ $V_{CC} = 5.0 \ V$	_	1	15	s	MB90F598G	Excludes 00H programming prior erasure
Chip erase time		_	5	_	s	MB90F598G	Excludes 00H programming prior
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead
Erase/Program cycle	—	10000	_	—	cycle		

Supply Current

