

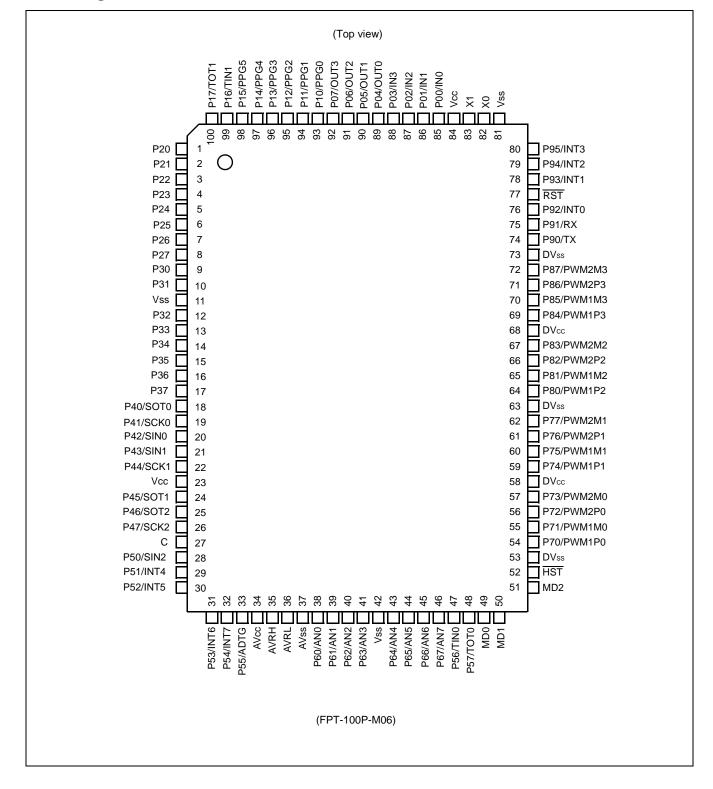
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

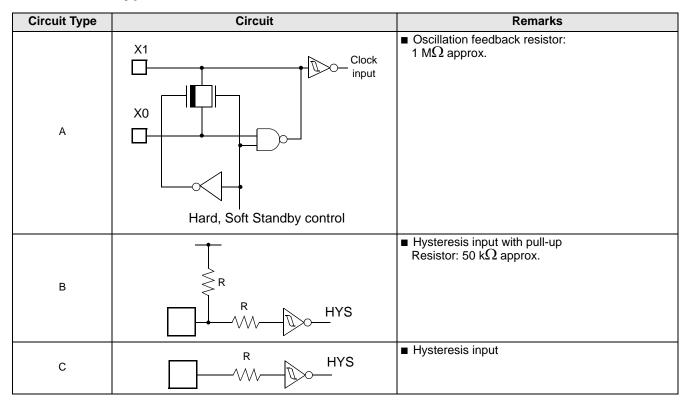
Details


Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	<u>.</u>
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-153

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Pin Assignment



Pin no.	Pin name	Circuit type	Function				
20	P50	D	General purpose IO				
28	SIN2	D	SIN Input for the Serial IO				
29 to 32	P51 to P54	D	General purpose IO				
291032	INT4 to INT7	D	External interrupt input for INT4 to INT7				
33	P55	D	General purpose IO				
	ADTG	ם	Input for the external trigger of the A/D Converter				
38 to 41	P60 to P63	E	General purpose IO				
30 10 41	AN0 to AN3	L	Inputs for the A/D Converter				
43 to 46	P64 to P67	E	General purpose IO				
43 10 40	AN4 to AN7	L	Inputs for the A/D Converter				
47	P56	D	General purpose IO				
47	TIN0	ם	TIN input for the 16-bit Reload Timer 0				
48	P57	D	General purpose IO				
40	ΤΟΤΟ	D	TOT output for the 16-bit Reload Timer 0				
	P70 to P73		General purpose IO				
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0				
	P74 to P77		General purpose IO				
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1				
	P80 to P83		General purpose IO				
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2				
	P84 to P87		General purpose IO				
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3				
74	P90	5	General purpose IO				
74	ТХ	D	TX output for CAN Interface				
75	P91	6	General purpose IO				
75	RX	D	RX input for CAN Interface				

Pin no.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
70	INT0		External interrupt input for INT0
78 to 80	P93 to P95	D	General purpose IO
70 10 00	INT1 to INT3		External interrupt input for INT1 to INT3
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to V_{CC} or $V_{SS}.$
51	MD2	н	Operating mode selection input pin. This pin should be connected to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}.$
27	С	_	External capacitor pin. A capacitor of $0.1 \mu F$ should be connected to this pin and $V_{\text{SS}}.$
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _W HYS	
		■ CMOS output
	Vcc	CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
	N-ch	
G		
Ũ		
	R	
	HYS	
	R	
		 Hysteresis input
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
		(except MB90F598G)
н		
	R	
	· · · ·	

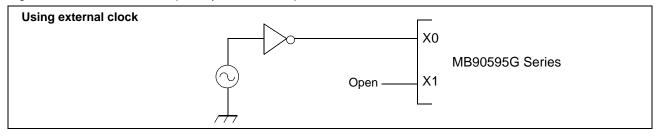
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

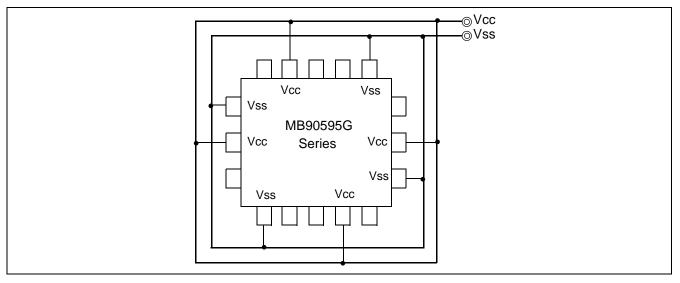

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

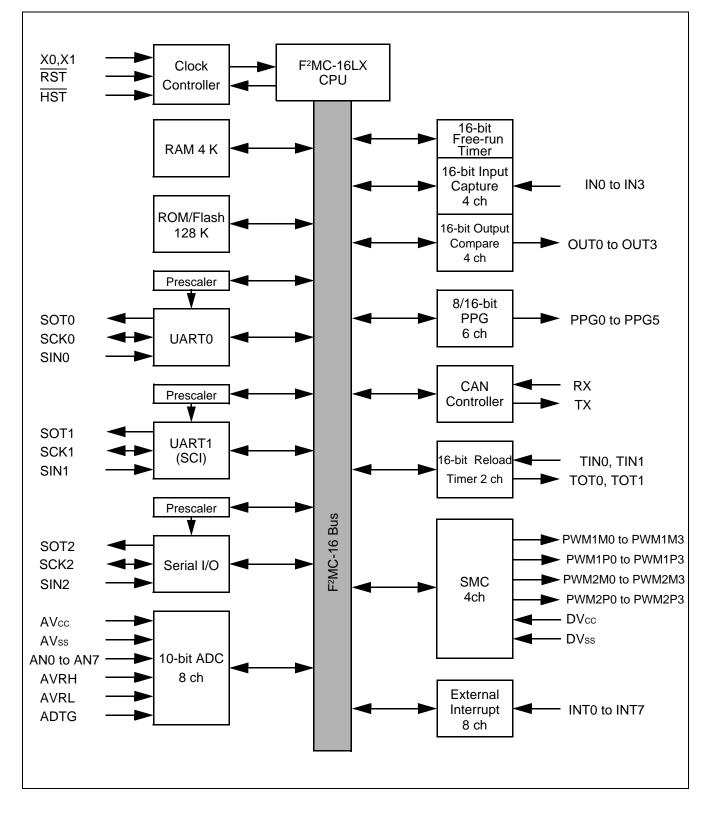
(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



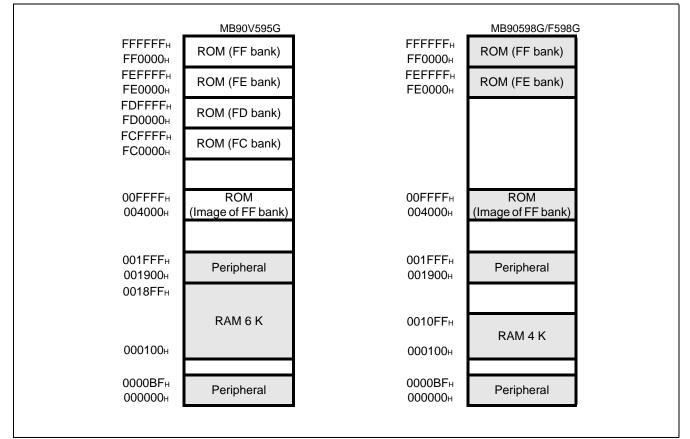
(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)


Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

6. Block Diagram



7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		•
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W	1	01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Pulse Generator 0/1 16-bit Programmable Pulse Generator 2/3 16-bit Programmable Pulse Generator 4/5 16-bit Programmable Pulse Generator 6/7	00000010в
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB
2 Fн	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		000000000
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External interrupt	000000000
33н	External Interrupt Level Register	ELVR	R/W	Serial IO External Interrupt A/D Converter A/D Converter I6-bit Programmable Pulse Generator 0/1 I6-bit Programmable Pulse Generator 2/3 I6-bit Programmable Pulse Generator 4/5 I6-bit Programmable Pulse Generator 6/7	000000000
34н	A/D Control Status Register 0	ADCS0	R/W		000000000
35н	A/D Control Status Register 1	ADCS1	R/W	16-bit Programmable Pulse	000000000
36н	A/D Data Register 0	ADCR0	R	A/D Convener	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_000_1в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	00000в
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_000_1в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	_	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16 bit Brogrommoble	0_000_1в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W		0_00001в
42 H	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43н		Reserved			
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16 bit Drogrommakia	0_000_1в
45 H	PPG7 Operation Mode Control Register	PPGC7	R/W	-	0_00001в
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	
47 н		Reserved		1	
48 H	PPG8 Operation Mode Control Register	PPGC8	R/W	16 bit Drogsommet L	0_000_1в
49 н	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse Generator 6/7 16-bit Programmable Pulse	0_00001в
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	
4Bн		Reserved		1	

Address	Register	Abbreviation	Access	Peripheral	Initial value
6 F н	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70 н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXAB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXAB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 0 _B
74 H	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXXAB
75 н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXXAB
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 0 _B
78 H	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000B
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	000000B
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controll	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0 _B
9 F н	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0
АОн	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	00011000в
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100в
A2н to A7н		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	ХХХХХ 1 1 1в
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAH to ADH		Reserved			•
АЕн	Flash Memory Control Status Register (MB90F598G only. FMCS R/W Flash Memory Otherwise reserved)		0 0 0 X 0 0 0 _B		
AFн		Reserved			

9. Can Controller

The CAN controller has the following features:

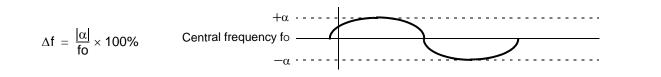
- Conforms to CAN Specification Version 2.0 Part A and B
 Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- □ 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

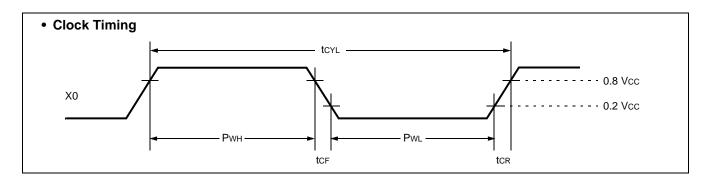
Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BVALR	R/W	0000000 0000000в	
000081 н	wessage burrer valid register	DVAER	10/00		
000082н	Transmit request register	TREQR	R/W	0000000 0000000B	
000083н		INEQI	10/00		
000084н	Transmit cancel register	TCANR	W	0000000 0000000 _в	
000085н		TCANK	vv	0000000 000000B	
000086н	Transmit complete register	TCR	R/W	0000000 0000000B	
000087н		TOK	N/ W	0000000 000000B	
000088 _H	Receive complete register	RCR	R/W	0000000 0000000B	
000089н		KCK			
00008Ан	Remote request receiving register	RRTRR	R/W	0000000 0000000B	
00008Bн		KKIKK	r/ vv		
00008Сн	Receive overrun register	ROVRR	R/W	0000000 0000000B	
00008Dн	Receive overrun register	KUVKK	R/ VV		
00008EH	Receive interrupt enable register	RIER	R/W	0000000 0000000 _в	
00008Fн		NIER	R/ VV		
001В00н		CSR		00000 00-1в	
001B01н	Control status register	CSR	R/W, R	00000 00-TB	
001B02H			D 44/	000.0000	
001В03н	Last event indicator register	LEIR	R/W	000-000 _в	
001B04 _H	Dessive/transmit error counter	DIFC	Р	0000000 00000000	
001B05н	Receive/transmit error counter	RTEC	R	00000000 0000000B	
001B06н		DTD	DAA		
001B07 н	Bit timing register	BTR	R/W	-1111111 11111111B	

9.1 List of Control Registers

Address	Register	Abbreviation	Access	Initial Value	
001A2Cн				XXXXXXXX XXXXXXX	
001A2Dн	ID register 3	IDR3	R/W		
001А2Ен		ibito	10,00	XXXXX XXXXXXXXB	
001A2Fн					
001A30н				XXXXXXXX XXXXXXXB	
001А31н	ID register 4	IDR4	R/W		
001А32н			10.00	XXXXX XXXXXXXXB	
001А33н					
001А34н				XXXXXXXX XXXXXXXB	
001A35н	ID register 5	IDR5	R/W		
001A36н		ibito	10,00	XXXXX XXXXXXXXB	
001А37н					
001A38н				XXXXXXXX XXXXXXXB	
001А39н	ID register 6	IDR6	R/W		
001АЗАн			11/10	XXXXX XXXXXXXXB	
001А3Вн					
001А3Cн				XXXXXXXX XXXXXXXB	
001А3Dн	ID register 7	IDR7	R/W		
001А3Ен			F\/ VV	XXXXX XXXXXXXXB	
001А3Fн]			//////////////////////////////////////	

(Continued)	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85$										
Parameter	Symbol	Pin name	Condition		Value		- Unit	Remarks			
Farameter	Symbol		Condition	Min	Тур	Мах		Remarks			
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF				
		P70 to P87	_	—	15	30	pF				
Pull-up resistance	Rup	RST	_	25	50	100	kΩ				
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ				

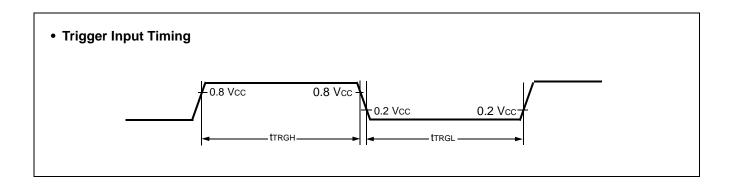

*: The power supply current testing conditions are when using the external clock.

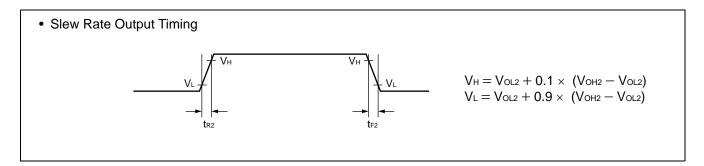

11.4 AC Characteristics

11.4.1 Clock Timing

				(Vcc = 5	.0 V±10%	%, Vss =	AVss = 0.0 V, $T_A = -40$ °C to +8
Parameter	Symbol	Pin name		Value		Unit	Remarks
Faidilielei	Symbol	Fin name	Min	Тур	Max	Unit	Reindiks
Oscillation frequency	fc	X0, X1	3	—	5	MHz	When using oscillation circuit
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock
Frequency deviation with PLL *	Δf	—	—	—	5	%	
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcr, tcr	X0	—	—	5	ns	When using external clock
Machine clock frequency	fср	—	1.5	—	16	MHz	
Machine clock cycle time	tcp	—	62.5	—	666	ns	
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU


*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.



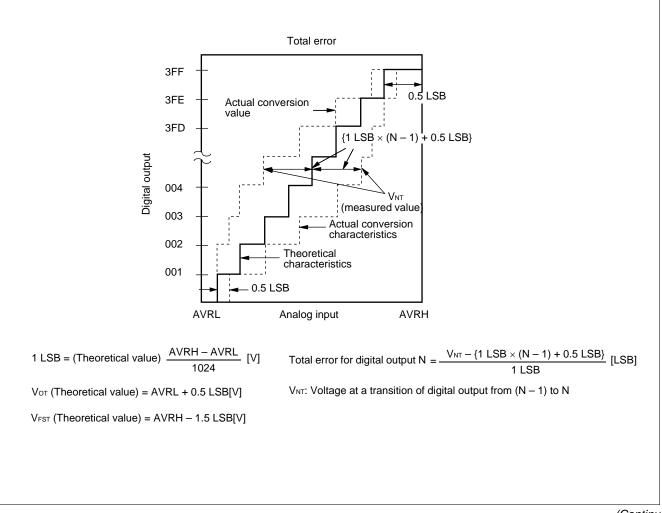

Example of Oscillation circuit

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) (Vcc = 5.0 V±10 %, Vss = AVss = 0.0 V, T _A = -40 °C to +85 °C)									
Parameter	Symbol	Pin name	Condition	Min	Value Typ	Max	Unit	Remarks	
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

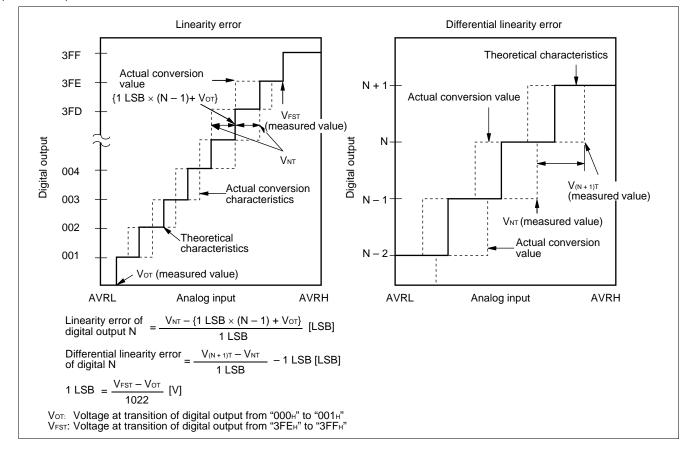
11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym- bol	Pin name	Value			Unit	Remarks
			Min	Тур	Max	Unit	Reillarks
Resolution	—	—	—		10	bit	
Conversion error	—	—	—	_	±5.0	LSB	
Nonlinearity error	_	—	—	_	±2.5	LSB	
Differential linearity error	—	—	—	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	—	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	

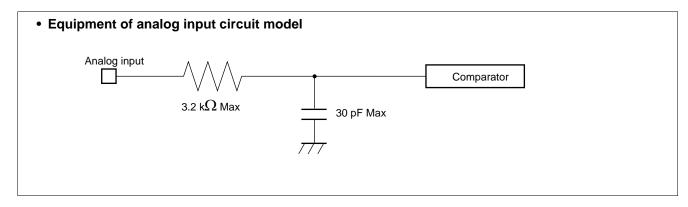

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.

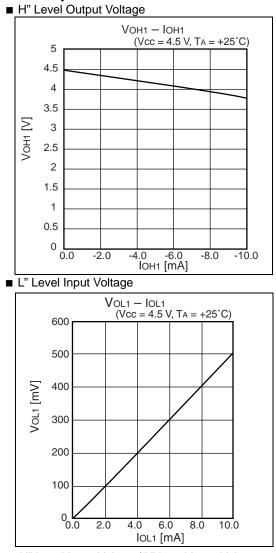


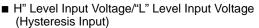
11.7 Notes on Using A/D Converter

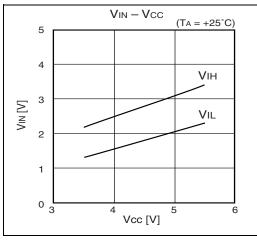
Select the output impedance value for the external circuit of analog input according to the following conditions,:

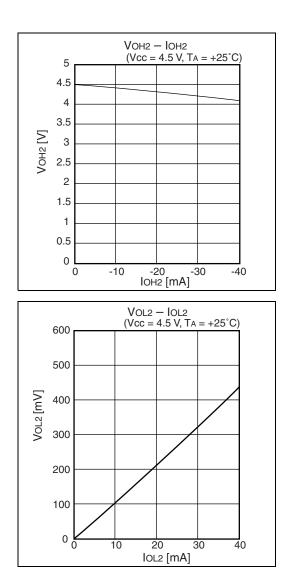
- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

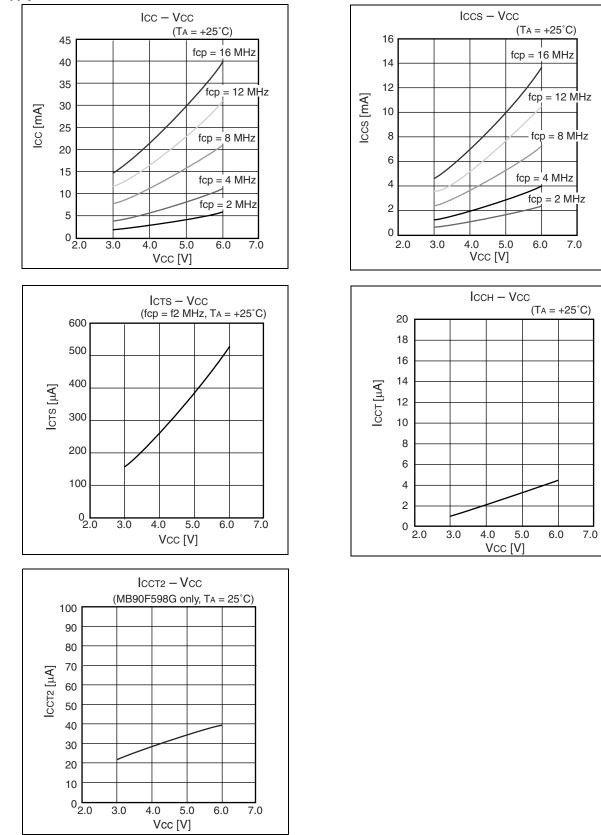



Error


The smaller the |AVRH - AVRL|, the greater the error would become relatively.



12. Example Characteristics



Supply Current

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	cypress.com/arm			
Automotive cypress.com/au	Itomotive			
Clocks & Buffers cypress.co	m/clocks			
Interface cypress.com/	/interface			
Internet of Things cypres	s.com/iot			
Lighting & Power Control cypress.com/pc	owerpsoc			
Memory cypress.com	/memory			
PSoC cypress.c	com/psoc			
Touch Sensing cypress.co	om/touch			
USB Controllers cypress.	.com/usb			
Wireless/RF cypress.com	/wireless			

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.