

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-166-er

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	14
Memory Space	15
I/O Map	16
Can Controller	23
List of Control Registers	23
List of Message Buffers (ID Registers)	24
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

Electrical Characteristics	31
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	45
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	50

1. Product Lineup

	Features	MB90598G	MB90F598G	MB90V595G	
Classifica	ation	Mask ROM product	Flash ROM product	Evaluation product	
ROM size	e	128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None	
RAM size	Э	4 Kbytes	4 Kbytes	6 Kbytes	
Emulator	-specific power supply	_	_		
CPU fund	ctions	The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) Interrupt processing time: 1.5 μs (at machine clock frequency of 16 MHz, minimum value)			
UART0		Clock synchronized transmission (500 K/1 M/2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/slave connection.			
UART1(S	SCI)	Clock synchronized transmission (62.5 K/125 Clock asynchronized transmission (1202/240 Transmission can be performed by bi-directio	K/250 K/500 K/1 Mbps) 4/4808/9615/31250 bps) nal serial transmission or by ma	ster/slave connection.	
8/10-bit A	VD converter	Conversion precision: 8/10-bit can be selectiv Number of inputs: 8 One-shot conversion mode (converts selected Scan conversion mode (converts two or more up to 8 chann Continuous conversion mode (converts selected character)	rely used. d channel once only) e successive channels and can p els) ted channel continuously) annel and stop operation repeate	rogram edly)	
8/16-bit PPG timers Number of channels: 6 (8/16-bit × 6 channels) 8/16-bit PPG timers PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ² , fsys/2 ⁴ (fsys = system clock frequency) 128us (fosc = 4MHz: oscillation clock frequency)			Jency)		
16-bit Re	load timer	Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fs Supports External Event Count function	ys/2 ⁵ (fsys = System clock frequ	ency)	
16-bit	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare re	egister		
er	Input captures	Number of channels: 4 Rewriting a register value upon a pin input (ris	sing, falling, or both edges)		

2. Pin Assignment

6. Block Diagram

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		•
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 _H	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed	·	·
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1 1 1 1 1 1 1 1 _B
1Cн to 1Fн		Reserv	ed	·	·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UARTU	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		000000Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
6Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXX _B
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXX _B
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
74н	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXX _B
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXX _B
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7 8н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX _B
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX _B
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7 Вн	PWM2 Select Register 2	PWS22	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7Fн	PWM2 Select Register 3	PWS23	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
80н to 8Fн	CAN Controlle	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_{ m B}$
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0в
А0н	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0 _B
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100 _B
A2H to A7H		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	$1_{-}00100_{B}$
AAH to ADH		Reserved			
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 0 _B
AFH		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111в
В1н	Interrupt Control Register 01	ICR01	R/W	Interrupt controller	00000111в
В2н	Interrupt Control Register 02	ICR02	R/W	interrupt controller	00000111в
В3н	Interrupt Control Register 03	ICR03	R/W		00000111
B4 _H	Interrupt Control Register 04	ICR04	R/W		00000111
В5н	Interrupt Control Register 05	ICR05	R/W		00000111
В6н	Interrupt Control Register 06	ICR06	R/W		00000111
В7н	Interrupt Control Register 07	ICR07	R/W		00000111
В8 н	Interrupt Control Register 08	ICR08	R/W		00000111
В9н	Interrupt Control Register 09	ICR09	R/W	Interrupt controller	00000111
ВАн	Interrupt Control Register 10	ICR10	R/W	Interrupt controller	00000111
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111
BDн	Interrupt Control Register 13	ICR13	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{ m B}$
BEн	Interrupt Control Register 14	ICR14	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
BFн	Interrupt Control Register 15	ICR15	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{ m B}$
COн to FFн		Reser	ved		
1900 H	Reload Register L	PRLL0	R/W		XXXXXXXX _B
1901 H	Reload Register H	PRLH0	R/W	16-bit Programmable	XXXXXXXX
1902 н	Reload Register L	PRLL1	R/W	Generator 0/1	XXXXXXXX _B
1903 н	Reload Register H	PRLH1	R/W		XXXXXXXX _B
1904 H	Reload Register L	PRLL2	R/W		XXXXXXXX _B
1905 н	Reload Register H	PRLH2	R/W	16-bit Programmable	XXXXXXXX _B
1906 н	Reload Register L	PRLL3	R/W	Generator 2/3	XXXXXXXX _B
1907 н	Reload Register H	PRLH3	R/W		XXXXXXXXB
1908 н	Reload Register L	PRLL4	R/W		XXXXXXXX _B
1909 н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXXB
190Ан	Reload Register L	PRLL5	R/W	Generator 4/5	XXXXXXXX
190В н	Reload Register H	PRLH5	R/W		XXXXXXXX
190Cн	Reload Register L	PRLL6	R/W		XXXXXXXX _B
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXX
190Eн	Reload Register L	PRLL7	R/W	Generator 6/7	XXXXXXXX
190F н	Reload Register H	PRLH7	R/W		XXXXXXXXB

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX _B
1911 н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXXB
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXXB
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX _B
1914 _H	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1915 _H	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX _B
1916 _H	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1917 н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX _B
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXXB
1921 _H	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX _B
1922н	Input Capture Register 1 (low-order)	IPCP1	R		XXXXXXXX _B
1923н	Input Capture Register 1 (high-order)	IPCP1	R	_	XXXXXXXX _B
1924 _H	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX _B
1925н	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXX _B
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX _B
1927 ⊦	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX _B
1928 _H	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX _B
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W		XXXXXXXX _B
192Aн	Output Compare Register 1 (low-order)	OCCP1	R/W	Ouipui Compare 0/1	XXXXXXXX _B
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX _B

Address	Register	Abbreviation	Access	Initial Value	
001A2Cн				XXXXXXX XXXXXXXxx	
001A2Dн	ID register 3	IDR3	R/W		
001A2Eн		ibito	10,10	XXXXX XXXXXXXxx	
001A2Fн					
001A30н				XXXXXXXX XXXXXXXx	
001A31н	ID register 4	IDR4	R/W		
001А32н					XXXXX XXXXXXXxx
001А33н					
001A34н	-			XXXXXXXX XXXXXXX	
001A35⊦	ID register 5	IDR5	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001A36⊦		IDR5	10,11	XXXXX XXXXXXXx _B	
001A37н				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001A38н	-			$XXXXXXXX XXXXXXXX_{B}$	
001A39н	ID register 6	IDR6	R/W		
001АЗАн		ibito	10,11	XXXXX XXXXXXXx _B	
001А3Bн				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001АЗСн				XXXXXXXX XXXXXXX	
001А3Dн	ID register 7	IDR7	R/W		
001А3Eн				XXXXX XXXXXXXxs	
001А3Fн					

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value
001А60н	DLC register 0		D/M/	VVVV-
001А61 н		DECRU	17/11	
001А62н	DI C register 1		R/M/	XXXX
001А63н		DEORT	10,00	
001A64н	DI C register 2	DI CR2	R/W	XXXX8
001A65н		DEGILE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
001A66н	DI C register 3	DI CR3	R/W	XXXX _B
001А67 н		520110		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
001A68н	DI C register 4	DI CR4	R/W	XXXX _B
001A69н				
001А6Ан	DLC register 5	DLCR5	R/W	XXXX _B
001A6Bн				
001A6Cн	DLC register 6	DLCR6	R/W	XXXXB
001A6Dн				
001A6Eн	DLC register 7	DLCR7	R/W	ХХХХв
001A6Fн		-		
001А70н	DLC register 8	DLCR8	R/W	XXXX
001A71н				
001A72н 001A73⊨	DLC register 9	DLCR9	R/W	XXXXB
001474				
001475	DLC register 10	DLCR10	R/W	XXXXв
001A76H				
001A77H	DLC register 11	DLCR11	R/W	XXXXB
001A78н				
001A79н	DLC register 12	DLCR12	R/W	XXXXB
001А7Ан				
001А7Вн	DLC register 13	DLCR13	R/W	XXXXB
001А7Сн				
001A7Dн	DLC register 14	DLCR14	R/W	XXXXB
001А7Ен	DLO services 45	DL CD 15	D 444	
001A7Fн	DLC register 15	DLCR15	R/W	XXXXB
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB

Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXB to XXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXB to XXXXXXXB
001АА0н to 001АА7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXB to XXXXXXXB
001АА8н to 001ААFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXB to XXXXXXXB
001АВ0н to 001АВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXB to XXXXXXXB
001АВ8н to 001АВFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXB to XXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXB to XXXXXXXB
001АЕ8н to 001АЕFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXB to XXXXXXXB
001АF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXB to XXXXXXXB
001АF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXB

(Continuou)			(Vcc = s)	5.0 V±10%	%, Vss = A	Vss = 0.0) V, TA =	=40 °C to +8
Parameter	Symbol	Symbol Pin name Co	Condition	Value			Unit	Domorko
Farameter			Condition	Min	Тур	Max	Unit	Remarks
Input capacity	CIN	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	—	_	5	15	pF	
		P70 to P87	_	_	15	30	pF	
Pull-up resistance	Rup	RST	_	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ	

*: The power supply current testing conditions are when using the external clock.

11.4 AC Characteristics

11.4.1 Clock Timing

	6, Vss =	$AV_{SS} = 0.0 V$, $T_A = -40 \degree C$ to $+$					
Deremeter	Cumhal	Din nome	Value			11	Domorko
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock
Frequency deviation with PLL *	Δf	—	—	—	5	%	
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcr, tcf	X0	_	—	5	ns	When using external clock
Machine clock frequency	fср	—	1.5	—	16	MHz	
Machine clock cycle time	t _{CP}	—	62.5	—	666	ns	
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

Example of Oscillation circuit

AC characteristics are set to the measured reference voltage values below.

11.4.3 Power On Reset

TT.4.5 TOWER ON RESEL	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$								
Parameter	Symbol	Symbol Bin name Condition V		Value		Unit	Pomarks		
raiameter	Symbol	Finitianie	Condition	Min	Max	Onic	itemarks		
Power on rise time	tR	Vcc		0.05	30	ms	*	I	
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation	I	

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.

11.4.4 UART0/1, Serial I/O Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Value		Unit	Domorko
Faiametei			Condition	Min	Max	Onic	itemai ka
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100		ns	
$SCK\!\uparrow \Rightarrow Valid\;SIN\;hold\;time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	—	ns	

11.4.6 Slew Rate High Co	1.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) ($Vcc = 5.0 V \pm 10 \%$, $Vss = AVss = 0.0 V$, $T_A = -40 \degree C$ to +85 $\degree C$)								
Parameter	Symbol	Pin name	Condition	Min	Value Typ	Max	Unit	Remarks	
Output Rise/Fall time	tr2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramatar	Sym-	Din nomo		Value	Unit	Pomarks	
Faidilielei	bol	Fill Hallie	Min	Тур	Max	Unit	Remarks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	—	±5.0	LSB	
Nonlinearity error	—	—	_	—	±2.5	LSB	
Differential linearity error	—	—	_	—	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	—	—		352tcp	—	ns	
Sampling time	—	—	_	64tcP	—	ns	
Analog port input current	IAIN	AN0 to AN7	-10		10	μA	
Analog input voltage range	VAIN	AN0 to AN7	AVRL	_	AVRH	V	

Parameter	Sym-	Din nomo		Unit	Bomorko		
Farameter	bol	Fill Hallie	Min	Тур	Max	Unit	Remarks
Reference voltage range	_	AVRH	AVRL + 3.0	—	AVcc	V	
	—	avrL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	—	5	—	mA	
	Іан	AVcc	_	_	5	μΑ	*
Reference voltage current	IR	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
			_	140	600	μΑ	MB90598G
	IRH	AVRH	—	—	5	μΑ	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

*: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.

Supply Current

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.