

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-172

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	MB90598G	MB90F598G	MB90V595G				
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW						
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	Jumber of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input.					
Serial IO	Clock synchronized transmission (31.25 K/62.5 H freque LSB first/MSB first	K/125 K/500 K/1 Mbps at syste ency of 16 MHz)	m clock				
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms					
Flash Memory	Supports automatic programming, Embedded Al Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to poir Memory Boot block configuration Erase can be performed on each block Block protection with external programming volta Flash Writer from Minato Electronics, Inc.	Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Elash Writer from Minato Electronics. Inc.					
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by						
Process		CMOS					
Power supply voltage for opera- tion*2	+	-5 V±10 %					
Package	QFP-100		PGA-256				

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _{VV} ,T _D HYS	
		CMOS output
		CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
G		
	R	
		■ Hysteresis input Pull down Resister: 50 kΩ approx
	R HYS	(except MB90F598G)
н	$\square \rightarrow_{R} \square$	
	\geq	
	, , ,	
		1

6. Block Diagram

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1в
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	$0_0 0 0 0 0 0 1_B$
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	$0\ 0\ 0\ 0\ 0\ 0\ _\ _^{B}$
4F _H		Reserved			
50н	Timer Control Status Register 0	TMCSR0	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000B
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54н	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0000 _B
56 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXX _B
57н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	$___ 0 0 0 0 0_B$
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; _\; 0\; 0_{\rm B}$
5Bн	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	0 0 0 0 0 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5 F н		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _\ 0_{\rm B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65н		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		00000000
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
68н	Timer Control Status Register	TCCS	R/W		000000000
69н to 6Ен		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX _B
1911 н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXXB
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX _B
1914 _H	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1915 _H	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX _B
1916 _H	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1917 н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX _B
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXXB
1921 _H	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX _B
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXXX _B
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX _B
1924 _H	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX _B
1925н	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXX _B
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX _B
1927 ⊦	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX _B
1928 _H	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX _B
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W		XXXXXXXX _B
192Aн	Output Compare Register 1 (low-order)	OCCP1	R/W	Ouipui Compare 0/1	XXXXXXXX _B
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX _B

Address	Register	Abbreviation	Access	Peripheral	Initial value		
192Сн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX		
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXXB		
192Е н	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/5	XXXXXXXXB		
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXXAB		
1930н to 19FFн	Reserved						
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller			
1B00н to 1BFFн	CAN	Controller. Refer to	section abou	ut CAN Controller			
1C00н to 1EFFн		Re	served				
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX		
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX		
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX		
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXXAB		
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX		
1FF5н	Program Address Detection Register 1 (high-order)				XXXXXXXX		
1FF6н to 1FFFн		Re	served				

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- □ 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BV/AL P	P/M		
000081 H	Nessage builer valid register	BVALK	IX/ VV	0000000 0000008	
000082н	Transmit request register	TREOR	R/W	0000000 00000000	
000083н		mean	10,00		
000084н	Transmit cancel register	TCANR	\٨/	0000000 0000000₀	
000085н		TOANK	vv	0000000 00000008	
000086н	Transmit complete register	TCR			
000087н		TOR	10/00	000000000000000000000000000000000000000	
000088н	Receive complete register	PCP	P/M		
000089н	Receive complete register	KOK	11/11		
00008Ан	Remote request receiving register	PPTPP	P/M		
00008BH	Remote request receiving register		11/11		
00008Cн		RO\/RR	R/M	0000000 0000000	
00008Dн		NOVIN	10/00		
00008EH	Receive interrupt enable register	RIER	R/M	0000000 0000000	
00008Fн	Receive interrupt chable register	MEN	10/00		
001В00н	Control status register	CSP		00000 00-1-	
001B01н		COR	10/00, 10	00000 00-18	
001B02н	Last event indicator register	I EIR	P/M	000-000p	
001В03н	Last event indicator register		10/00	000-00008	
001B04 _H	Receive/transmit error counter	RTEC	P		
001B05н		KILO		0000000 0000000B	
001B06н	Bit timing register	BTP	P/M	_1111111 1111111	
001В07 н		DIK	FX/ V V	-111111 1111111B	

9.1 List of Control Registers

Address	Register	Abbreviation	Access	Initial Value
001A40н				XXXXXXXX XXXXXXXx
001A41н	ID register 8	IDR8	R/W	
001A42н		ibito	10,11	XXXXX XXXXXXXX _B
001А43н				
001А44н				XXXXXXXX XXXXXXX
001A45н	ID register 9	IDR9	R/W	
001A46н	-			XXXXX XXXXXXXXB
001А47н				
001A48н	-			XXXXXXXX XXXXXXXX
001A49н	ID register 10	IDR10	R/W	
001A4Aн	-			XXXXX XXXXXXXXB
001A4BH				
001A4CH	-			XXXXXXXX XXXXXXXXB
001A4DH	ID register 11	IDR11	R/W	
001А4Ен 001А4Fн	-			XXXXX XXXXXXXXB
001А50н				
001А51н				XXXXXXXX XXXXXXXX
001А52н	ID register 12	IDR12	R/W	
001А53н				XXXXX XXXXXXXXB
001А54н				
001А55н	ID register 13		D ///	~~~~~~~~~~~~
001А56н		IDK 15	IX/ VV	XXXXX XXXXXXXXx
001А57н				
001A58н				XXXXXXXX XXXXXXXx
001A59н	ID register 14	IDR14	R/W	
001А5Ан				XXXXX XXXXXXXXB
001А5Вн				
001A5CH	4			XXXXXXXX XXXXXXXX
001А5Dн	ID register 15	IDR15	R/W	
001А5Ен	-			XXXXX XXXXXXXXB
001А5Fн				

Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXB to XXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXB to XXXXXXXB
001АА0н to 001АА7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXB to XXXXXXXB
001АА8н to 001ААFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXB to XXXXXXXB
001АВ0н to 001АВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXB to XXXXXXXB
001АВ8н to 001АВFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXB to XXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXB to XXXXXXXB
001АЕ8н to 001АЕFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXB to XXXXXXXB
001АF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXB to XXXXXXXB
001АF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXXB

Notes:

- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of EI²OS, the EI²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the EI²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the EI²OS clear signal caused by the first event. So it is recommended not to use the EI²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Deremeter	Symbol	Rat	ing	1 lmit	Demarka	
Falameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	$V_{SS} - 0.3$	Vss + 6.0	V		
	AVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	$V_{SS} = 0.3$	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vı	$V_{SS} = 0.3$	Vss + 6.0	V		*2
Output voltage	Vo	$V_{SS} = 0.3$	Vss + 6.0	V		*2
Maximum Clamp Current		-2.0	2.0	mA	*6	
Maximum Total Clamp Current	∑ Iclamp	_	20	mA	*6	
"L" level Max. output current	IOL1	—	15	mA	Normal output	*3
"L" level Avg. output current	OLAV1	—	4	mA	Normal output, average value	*4
"L" level Max. output current	IOL2	—	40	mA	High current output	*3
"L" level Avg. output current	OLAV2	—	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑lol1	—	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	—	330	mA	Total high current output	
"L" level Avg. overall output current	∑lolav1	—	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	\sum Iolav2	—	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	_	-15	mA	Normal output	*3
"H" level Avg. output current	OHAV1	—	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	—	-40	mA	High current output	*3
"H" level Avg. output current	OHAV2	—	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	—	-100	mA	Total normal output	
"H" level Max. overall output current	∑Іон₂	—	-330	mA	Total high current output	
"H" level Avg. overall output current	∑ I OHAV1	—	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑ I OHAV2	—	-250	mA	Total high current output, average value	*5
Power consumption	Pa	_	500	mW	MB90F598G	
	ΓU	—	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*2: VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3: The maximum output current is a peak value for a corresponding pin.

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.

*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

*6:

- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

Parameter	Symbol	Bin name Condition		Value			Unit	Pomarke
Falameter	Symbol	Finname	Condition	Min	Тур	Max	Unit	Relliarks
Input leak current	١L		Vcc = 5.5 V, Vss < V1 < Vcc	-5	_	5	μΑ	
			$V_{CC} = 5.0 V \pm 10\%$, Internal frequency:	_	35	60	mA	MB90598G
	ice		16 MHz, At normal operating	—	40	60	mA	MB90F598G
	lccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep	_	11	18	mA	
Power supply current *	Vcc	Vcc	V _{cc} = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA	
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	_	_	20	μΑ	
	locus		Vcc = 5.0 V±10%, At Hardware stand-	_	_	20	μA	MB90598G
	ICCH2		by mode, T₄ = 25°C		50	100	μΑ	MB90F598G

(Continuou)			(Vcc = s)	5.0 V±10%	%, Vss = A	Vss = 0.0) V, TA =	=40 °C to +8		
Parameter	Symbol	0 m h a l		Din name	Condition		Value		Unit	Bomorko
Farameter		ndor Pin name Condition	Min	Тур	Max	Unit	Remarks			
Input capacity CIN	CIN	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	—	_	5	15	pF			
		P70 to P87	_	_	15	30	pF			
Pull-up resistance	Rup	RST	_	25	50	100	kΩ			
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ			

*: The power supply current testing conditions are when using the external clock.

11.4 AC Characteristics

11.4.1 Clock Timing

				$(V_{CC} = 5.0 \text{ V}\pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to}$				
Deremeter	Symbol	Pin name		Value		l Init	Domorko	
Faldilletei			Min	Тур	Max	Unit	Remarks	
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit	
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit	
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock	
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock	
Frequency deviation with PLL *	Δf	—	_	—	5	%		
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.	
Input clock rise and fall time	tcr, tcf	X0	_	—	5	ns	When using external clock	
Machine clock frequency	fср	—	1.5	—	16	MHz		
Machine clock cycle time	t _{CP}	—	62.5	—	666	ns		
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU	

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

AC characteristics are set to the measured reference voltage values below.

11.4.3 Power On Reset

$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$											
Parameter	Symbol	Din nama	Condition	Value		Unit	Pomarks	1			
raiameter	Symbol	Finitianie	Condition	Min	Max	Onic	Remarks				
Power on rise time	tR	Vcc		0.05	30	ms	*	I.			
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation	I			

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.

11.4.4 UART0/1, Serial I/O Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

Paramatar	Symbol	Pin nomo	Condition	Value		Unit	Bomarka
Faiametei	Symbol	Fin name	Condition	Min	Max	Unit	Itema ks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation output pins are $C_L = 80$ pF + 1 TTL.	-80	80	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2		100		ns	
SCK $\uparrow \Rightarrow$ Valid SIN hold time	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	—	ns	

Baramotor	Symbol	Pin namo	Condition	Value		Unit	Bomorko
Faialletei	Symbol	Fininanie	Condition	Min	Max	Onit	itemaiks
Serial clock "H" pulse width	ts∺s∟	SCK0 to SCK2		4 tcp	—	ns	
Serial clock "L" pulse width	tslsh	SCK0 to SCK2		4 tcp	—	ns	
$SCK\downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are $C_{L} = 80$		150	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2	pF + 1 TTL.	60	_	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes:

- AC characteristic in CLK synchronized mode.
- CL is load capacity value of pins when testing.
- t_{cp} (external operation clock cycle time) : see Clock timing.

Parameter	Sym-	Din nomo		Unit	Domorko		
Faiametei	bol	Fill hame	Min	Тур	Max	Unit	Remarks
	_	AVRH	AVRL + 3.0	—	AVcc	V	
Reference voltage range	—	avrL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	—	5	—	mA	
	Іан	AVcc	_	_	5	μΑ	*
Reference voltage current	Ir	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
			_	140	600	μΑ	MB90598G
	IRH	AVRH	—	—	5	μΑ	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

*: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.

11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

Supply Current

