

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-173-jne1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	14
Memory Space	15
I/O Map	16
Can Controller	23
List of Control Registers	23
List of Message Buffers (ID Registers)	24
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

Electrical Characteristics	31
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	45
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	50

1. Product Lineup

	Features	MB90598G	MB90F598G	MB90V595G				
Classifica	ation	Mask ROM product	Flash ROM product	Evaluation product				
ROM size	e	128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None				
RAM size	Э	4 Kbytes	4 Kbytes	6 Kbytes				
Emulator	-specific power supply	_		None				
CPU fund	ctions	The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) Interrupt processing time: 1.5μ s (at machine clock frequency of 16 MHz, minimum value)						
UART0	IART0 Clock synchronized transmission (500 K/1 M/2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/slave connection.							
UART1(S	SCI)	Clock synchronized transmission (62.5 K/125 Clock asynchronized transmission (1202/240 Transmission can be performed by bi-directio	K/250 K/500 K/1 Mbps) 4/4808/9615/31250 bps) nal serial transmission or by ma	ster/slave connection.				
8/10-bit A	VD converter	Conversion precision: 8/10-bit can be selectiv Number of inputs: 8 One-shot conversion mode (converts selected Scan conversion mode (converts two or more up to 8 chann Continuous conversion mode (converts selected character)	rely used. d channel once only) e successive channels and can p els) ted channel continuously) annel and stop operation repeate	rogram edly)				
8/16-bit PPG timers Number of channels: 6 (8/16-bit × 6 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/21, fsys/22, fsys/23, fsys/24 (fsys = system clock frequency) 128µs (fosc = 4MHz: oscillation clock frequency)								
16-bit Re	load timer	Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fs Supports External Event Count function	ys/2 ⁵ (fsys = System clock frequ	ency)				
16-bit	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare re	egister					
er	Input captures	Number of channels: 4 Rewriting a register value upon a pin input (ris	sing, falling, or both edges)					

5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

6. Block Diagram

7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		•
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 _H	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed	·	·
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1 1 1 1 1 1 1 1 _B
1Cн to 1Fн		Reserv	ed	·	·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UARTU	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		000000Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111в

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010в
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB
2 F н	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		00000000
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External interrupt	00000000
33н	External Interrupt Level Register	ELVR	R/W		000000000
34н	A/D Control Status Register 0	ADCS0	R/W		00000000
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Convertor	00000000
36н	A/D Data Register 0	ADCR0	R	A/D Conventer	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_000_1в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	000000B
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-hit Programmable	0_000_1в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	00000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_000_1в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001в
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43 _H		Reserved		1	1
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_000_1в
45 _H	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001в
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	00000в
47 H		Reserved		1	1
48 _H	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable	0_000_1в
49 H	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse	0_00001в
4 Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	000000в
4B⊦		Reserved	<u> </u>	1	

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX _B
1911 н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXXB
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX _B
1914 _H	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1915 _H	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX _B
1916 _H	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1917 н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX _B
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXXB
1921 _H	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX _B
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXXX _B
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX _B
1924 _H	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX _B
1925н	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXX _B
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX _B
1927 ⊦	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX _B
1928 _H	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX _B
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W		XXXXXXXX _B
192Aн	Output Compare Register 1 (low-order)	OCCP1	R/W	Ouipui Compare 0/1	XXXXXXXX _B
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX _B

(Continued)

(Continued)

Address	Register	Abbreviation	Access	Initial Value	
001B08 _H	IDE register	IDEP	D/M		
001B09н		IDER			
001В0Ан	Transmit RTR register	TPTPP	P/M		
001B0Bн				0000000 000000B	
001B0Cн	Romoto framo roceivo waiting register		D/M		
001B0DH	Kemole frame receive walling register	REWIR	r./ vv	~~~~~~~~~~~~~~~	
001B0Eн	Transmit interrupt anable register	TIED	D/M/	0000000 000000-	
001B0Fн		HER	r./ vv	0000000 000000B	
001B10н					
001B11н			D ///		
001B12н	Acceptance mask select register	AIVISK	R/W		
001B13н					
001B14н					
001B15н			DAA	ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΒ	
001B16н	Acceptance mask register 0	AWRU	R/VV		
001B17н]			~~~~~ ~~~~~	
001B18н					
001B19н			DAA		
001В1Ан	Acceptance mask register 1	AIVIR	AMR0 R/W XXXXXX AMR1 R/W XXXXX AMR1 XXXXX		
001B1Bн	1			ΛΛΛΛΛ ΛΛΛΛΛΛΛΧΧΒ	

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
001A00н to 001A1Fн	General-purpose RAM		R/W	XXXXXXXB to XXXXXXXB
001А20н				XXXXXXXX XXXXXXXx
001A21н	ID register 0	IDRO	R/M	
001A22н		ibito	10/00	XXXXX XXXXXXXXx
001А23н				
001A24н				XXXXXXXX XXXXXXXx
001A25н	ID register 1		R/M	
001А26н		IDI(I	10/00	XXXXX XXXXXXXXx
001A27н				
001A28н				XXXXXXXX XXXXXXXx
001A29н	ID register 2		R/M	
001A2Aн			11/11	×××××
001А2Вн				VVVVV VVVVVVVR

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

	El ² OS	Interru	pt vector	Interrupt control register		
interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8H			
Exception	N/A	# 10	FFFFD4H			
CAN RX	N/A	# 11	FFFFD0H	ICB00	000080	
CAN TX/NS	N/A	# 12	FFFFCC _H	ICRUU	UUUUBUH	
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8H		0000B1	
Time Base Timer	N/A	# 14	FFFFC4H	ICRUI	UUUUB IH	
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	0000B2	
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000628	
16-bit Free-run Timer	N/A	# 17	FFFFB8H		0000B2	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICRUS	0000634	
Serial I/O	*1	# 19	FFFFB0H		0000R4	
External Interrupt (INT4/INT5)	*1	# 20	FFFFACH	ICR04	0000B4H	
Input Capture 0	*1	# 21	FFFFA8H		0000R5	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICK05	0000854	
Output Compare 0	*1	# 23	FFFFA0H		0000R6	
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICK00		
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н		0000B7	
Input Capture 1	*1	# 26	FFFF94 _H		0000878	
8/16-bit PPG 4/5	N/A	# 27	FFFF90н		000088	
Output Compare 1	*1	# 28	FFFF8CH		0000000	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H		000089	
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000034	
8/16-bit PPG 8/9	N/A	# 31	FFFF80 _H		000084	
Output Compare 2	*1	# 32	FFFF7C _H		OOODAH	
Input Capture 3	*1	# 33	FFFF78⊦		0000BB	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт		
Output Compare 3	*1	# 35	FFFF70н		0000BCu	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	000000	
UART 0 RX	*2	# 37	FFFF68 _H			
UART 0 TX	*1	# 38	FFFF64н	101(13		
UART 1 RX	*2	# 39	FFFF60 _H		0000BE	
UART 1 TX	*1	# 40	FFFF5CH			
Flash Memory	N/A	# 41	FFFF58 _H			
Delayed interrupt	N/A	# 42	FFFF54H	ICK IS	UUUUBEH	

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

11.2 Recommended Conditions

(Vss = AVss = 0.0 V)

Paramotor	Symbol	Value			Unit	Pomarks		
Farameter	Symbol	Min	Тур	Max	Unit	Remarks		
Power supply veltage	Vcc	4.5	5.0	5.5	V	Under normal operation		
Power supply voltage	AVcc	3.0	-	5.5	V	Maintains RAM data in stop mode		
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*		
Operating temperature	TA	-40	—	+85	°C			

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

		-	(Vcc =	5.0 V±10%	6, Vss = /	AVss = 0.0) V, TA	= -40 °C to +8
Parameter	Symbol	Pin name	Condition –	Value			Unit	Bomarka
Falameter	Symbol			Min	Тур	Max	Unit	Remarks
Input H voltage	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V	
	VIHM	MD input pin	—	Vcc - 0.3	_	Vcc +0.3	V	
Input L voltage	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
	VILM	MD input pin	—	Vss - 0.3	_	Vss +0.3	V	
Output H	Vон1	Output pins except P70 to P87	Vcc = 4.5 V, Іон1 = -4.0 mA	Vcc - 0.5	_	_	V	
voltage	V _{OH2}	P70 to P87	Vcc = 4.5 V, Іон ₂ = -30.0 mA	Vcc - 0.5	_	_	V	
Output I	Vol1	Output pins except P70 to P87	Vcc = 4.5 V, IoL1 = 4.0 mA	_		0.4	V	
voltage	Vol2	P70 to P87	$V_{CC} = 4.5 V,$ IOL2 = 30.0 mA	_	_	0.5	V	

Example of Oscillation circuit

11.4.2 Reset and Hardware Standby Input

			$(Vcc = 5.0 V \pm$	10%, Vss	= AVss	$s = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +80 ^{\circ}$	35 °C
Paramotor	Symbol	Pin name	Value		Unit	Pomarks	
Falametei			Min	Max	Unit	Rellidiks	
Reset input time	t RSTL	RST	16 tcp*1	—	ns	Under normal operation	
			Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode	
Hardware standby input time	t⊣s⊤∟	HST	16 tcp*1	—	ns	Under normal operation	
			Oscillation time of oscillator*2 + 16 tcp*1	_	ms	In stop mode	

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) $(V_{cc} = 5.0 \text{ V} \pm 10 \text{ \%}, \text{Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$									
Parameter	Symbol	Pin name	Condition	Min	Value Typ	Max	Unit	Remarks	
Output Rise/Fall time	tr2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramatar	Baramatar Sym-		Value				Bomarka
Faidilielei	bol	Fill Hallie	Min	Тур	Max	Unit	Remarks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	—	±5.0	LSB	
Nonlinearity error	—	—	_	—	±2.5	LSB	
Differential linearity error	—	—	_	—	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	—	—		352tcp	—	ns	
Sampling time	—	—	_	64tcP	—	ns	
Analog port input current	IAIN	AN0 to AN7	-10		10	μA	
Analog input voltage range	VAIN	AN0 to AN7	AVRL	_	AVRH	V	

(Continued)

11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

Supply Current

13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
_	Deleted the old products, MB90598, MB90F598, and MB90V595.
_	Changed the series name; MB90595/595G series ? MB90595G series
-	Changed the following erroneous name. I/O timer \rightarrow 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode \rightarrow Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 V_{CC} 0.2 V_{CC}
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date ** _ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. *A 5537128 AKIH 11/30/2016 Updated to Cypress template