

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

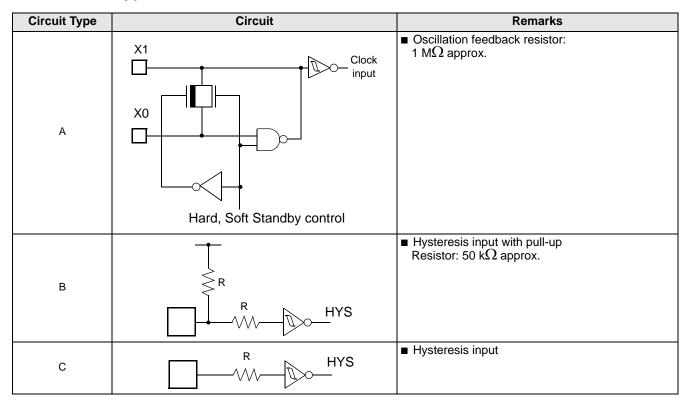
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

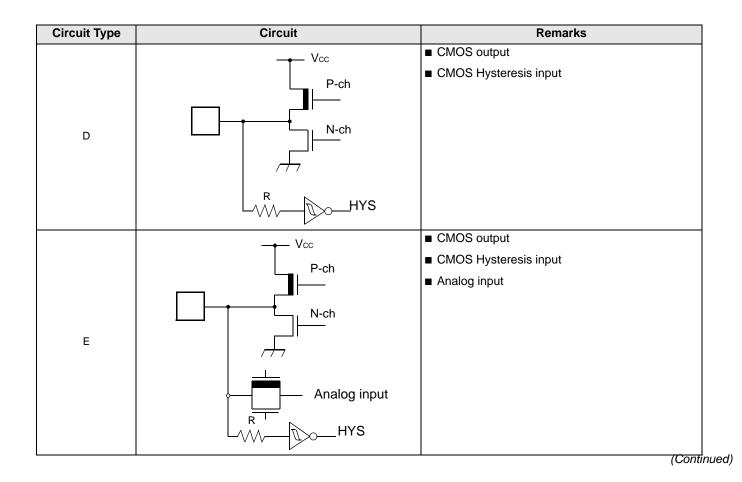
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-173

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


3. Pin Description

Pin no.	Pin name	Circuit type	Function				
82	X0	٨					
83	X1	A	Oscillator pin				
77	RST	В	Reset input				
52	HST	С	Hardware standby input				
85 to 88	P00 to P03	G	General purpose IO				
00 10 00	IN0 to IN3	6	Inputs for the Input Captures				
89 to 92	P04 to P07	G	General purpose IO				
09 10 92	OUT0 to OUT3	9	Outputs for the Output Compares.				
93 to 98	P10 to P15	D	General purpose IO				
93 10 98	PPG0 to PPG5	d	Outputs for the Programmable Pulse Generators				
99	P16	D	General purpose IO				
33	TIN1	d	TIN input for the 16-bit Reload Timer 1				
100	P17	D	General purpose IO				
100	TOT1	d	TOT output for the 16-bit Reload Timer 1				
1 to 8	P20 to P27	G	General purpose IO				
9 to 10	P30 to P31	G	General purpose IO				
12 to 16	P32 to P36	G	General purpose IO				
17	P37	D	General purpose IO				
18	P40	G	General purpose IO				
10	SOT0	0	SOT output for UART 0				
19	P41	G	General purpose IO				
19	SCK0	0	SCK input/output for UART 0				
20	P42	G	General purpose IO				
20	SIN0	0	SIN input for UART 0				
21	P43	G	General purpose IO				
21	SIN1	0	SIN input for UART 1				
22	P44	G	General purpose IO				
22	SCK1	0	SCK input/output for UART 1				
24	P45	G	General purpose IO				
24	SOT1	6	SOT output for UART 1				
25	P46	G	General purpose IO				
20	SOT2	5	SOT output for the Serial IO				
26	P47	G	General purpose IO				
20	SCK2	5	SCK input/output for the Serial IO				



Pin no.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
70	INT0		External interrupt input for INT0
78 to 80	P93 to P95	D	General purpose IO
70 10 00	INT1 to INT3		External interrupt input for INT1 to INT3
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to V_{CC} or $V_{SS}.$
51	MD2	н	Operating mode selection input pin. This pin should be connected to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}.$
27	С	_	External capacitor pin. A capacitor of $0.1 \mu F$ should be connected to this pin and $V_{\text{SS}}.$
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _W HYS	
		■ CMOS output
	Vcc	CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
	N-ch	
G		
Ũ		
	R	
	HYS	
	R	
		 Hysteresis input
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
		(except MB90F598G)
н		
	R	
	· · · ·	

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

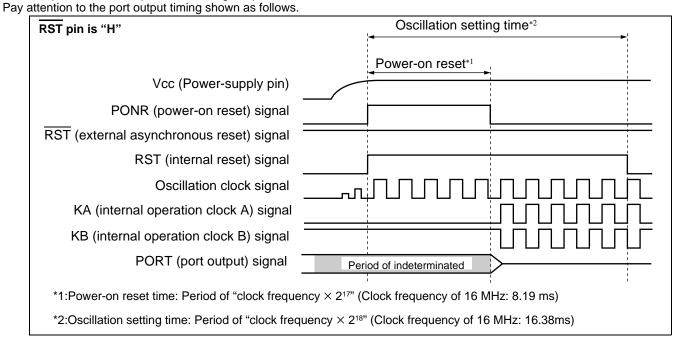
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at


50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		•
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W	1	01111в

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111
В1н	Interrupt Control Register 01	ICR01	R/W		00000111в
В2н	Interrupt Control Register 02	ICR02	R/W	Interrupt controller	00000111в
В3н	Interrupt Control Register 03	ICR03	R/W		00000111в
В4н	Interrupt Control Register 04	ICR04	R/W		00000111в
В 5н	Interrupt Control Register 05	ICR05	R/W		00000111
В6н	Interrupt Control Register 06	ICR06	R/W	- - - - -	00000111в
В7н	Interrupt Control Register 07	ICR07	R/W		00000111
В8 н	Interrupt Control Register 08	ICR08	R/W		00000111
В 9н	Interrupt Control Register 09	ICR09	R/W		00000111
ВАн	Interrupt Control Register 10	ICR10	R/W	Interrupt controller	00000111
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111
BDн	Interrupt Control Register 13	ICR13	R/W		00000111
ВЕн	Interrupt Control Register 14	ICR14	R/W		00000111
BFн	Interrupt Control Register 15	ICR15	R/W		00000111
C0н to FFн		Rese	rved		
1900 н	Reload Register L	PRLL0	R/W		XXXXXXXXAB
1901 _H	Reload Register H	PRLH0	R/W	16-bit Programmable	XXXXXXXXAB
1902 н	Reload Register L	PRLL1	R/W	Pulse Generator 0/1	XXXXXXXXAB
1903 _H	Reload Register H	PRLH1	R/W		XXXXXXXXAB
1904 _H	Reload Register L	PRLL2	R/W		XXXXXXXXAB
1905 ^{_H}	Reload Register H	PRLH2	R/W	16-bit Programmable	XXXXXXXXAB
1906 ^{_H}	Reload Register L	PRLL3	R/W	Pulse Generator 2/3	XXXXXXXXAB
1907 _H	Reload Register H	PRLH3	R/W		XXXXXXXXAB
1908 _H	Reload Register L	PRLL4	R/W		XXXXXXXXB
1909 ^{_H}	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXXAB
190Aн	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXX
190Bн	Reload Register H	PRLH5	R/W		XXXXXXXX
190Cн	Reload Register L	PRLL6	R/W		XXXXXXXX
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXXB
190Eн	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXX
190Fн	Reload Register H	PRLH7	R/W		XXXXXXXXAB

(Continued)

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value				
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX				
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX				
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX				
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX				
1930н to 19FFн		Reserved							
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller					
1B00н to 1BFFн	CAN	Controller. Refer to	section abou	ut CAN Controller					
1C00H to $1EFFH$		Re	served						
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX				
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX				
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX				
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX				
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX				
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB				
1FF6н to 1FFFн		Re	served						

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value	
001A60н			D 444	~~~~~	
001А61 н	DLC register 0	DLCR0	R/W	XXXXB	
001A62н					
001A63н	DLC register 1	DLCR1	R/W	ХХХХв	
001A64н			DAA	VVV-	
001A65н	DLC register 2	DLCR2	R/W	ХХХХв	
001A66н	- DLC register 3	DLCR3	R/W	ХХХХв	
001А67 н	DLC register 3	DLCR3	R/VV	XXXAB	
001A68н	DLC register 4		DAM		
001A69н	DLC register 4	DLCR4	R/W	ХХХХв	
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв	
001A6Bн	DLC register 5	DLCRS	r./vv		
001A6Cн	DLC register 6	DLCR6	R/W	ХХХХв	
001A6DH	DLC register o	DLCRO	r./vv		
001A6Eн	DLC register 7	DLCR7	R/W	XXXXB	
001A6Fн		DLCR7	r./vv		
001А70 н	DLC register 8	DLCR8	R/W	XXXX	
001A71 н	DLC register o	DECKO		^	
001А72 н	DLC register 9	DLCR9	R/W	XXXXB	
001А73 н	DLC register 9	DLCK9	FN/ V V		
001A74н	DLC register 10	DLCR10	R/W	XXXXB	
001A75н		DECKTO	10/00		
001A76н	DLC register 11	DLCR11	R/W	XXXXB	
001А77 н		DECKT	10/00		
001A78н	DLC register 12	DLCR12	R/W	XXXXB	
001A79н		DEORTZ	10,00		
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB	
001A7Bн		DEORIG			
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв	
001A7DH		DLOR 14			
001A7Eн	DLC register 15	DLCR15	R/W	ХХХХв	
001A7Fн		DEORIG		/////6	
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB	

(Continued)

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

	El ² OS	Interru	pt vector	Interrupt control register		
Interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8H			
Exception	N/A	# 10	FFFFD4H			
CAN RX	N/A	# 11	FFFFD0H	10000	0000000	
CAN TX/NS	N/A	# 12	FFFFCC _H	ICR00	0000В0н	
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10001	0000001	
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000B1н	
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	0000000	
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000В2н	
16-bit Free-run Timer	N/A	# 17	FFFFB8H	10000	0000000	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICR03	0000ВЗн	
Serial I/O	*1	# 19	FFFFB0H	ICR04	0000B4⊦	
External Interrupt (INT4/INT5)	*1	# 20	FFFFAC H	ICK04	0000B4H	
Input Capture 0	*1	# 21	FFFFA8H	ICR05	0000B5н	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICR05	0000638	
Output Compare 0	*1	# 23	FFFFA0H	ICR06	0000 B6 н	
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICRUO		
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н	ICR07	0000 В7 н	
Input Capture 1	*1	# 26	FFFF94н		0000071	
8/16-bit PPG 4/5	N/A	# 27	FFFF90н	ICR08	0000B8н	
Output Compare 1	*1	# 28	FFFF8CH	101000	0000B0H	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICR09	0000 В 9н	
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000898	
8/16-bit PPG 8/9	N/A	# 31	FFFF80н	ICR10	0000ВАн	
Output Compare 2	*1	# 32	FFFF7C _H		UUUUDAH	
Input Capture 3	*1	# 33	FFFF78⊦	ICR11	0000BBн	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт	0000BBA	
Output Compare 3	*1	# 35	FFFF70н	ICR12	0000BCH	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	0000000	
UART 0 RX	*2	# 37	FFFF68н	ICR13	0000BDн	
UART 0 TX	*1	# 38	FFFF64⊦			
UART 1 RX	*2	# 39	FFFF60н	ICR14	0000BEн	
UART 1 TX	*1	# 40	FFFF5C _H			
Flash Memory	N/A	# 41	FFFF58⊦	ICR15	0000BFн	
Delayed interrupt	N/A	# 42	FFFF54н		UUUUDI'H	

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

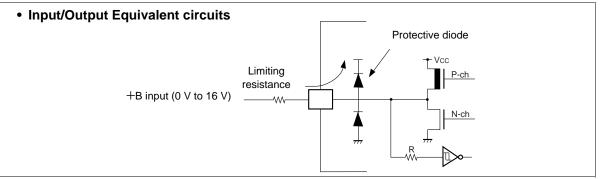
Parameter	meter Symbol Rating Unit Remarks					
Parameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	V _{SS} - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vi	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Output voltage	Vo	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Maximum Clamp Current		-2.0	2.0	mA	*6	
Maximum Total Clamp Current	∑ Iclamp	—	20	mA	*6	
"L" level Max. output current	IOL1	_	15	mA	Normal output	*3
"L" level Avg. output current	IOLAV1	_	4	mA	Normal output, average value	*4
"L" level Max. output current	IOL2	_	40	mA	High current output	*3
"L" level Avg. output current	IOLAV2	_	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑lol1	_	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	—	330	mA	Total high current output	
"L" level Avg. overall output current	\sum IOLAV1	_	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	\sum Iolav2	_	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	_	-15	mA	Normal output	*3
"H" level Avg. output current	IOHAV1	_	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	_	-40	mA	High current output	*3
"H" level Avg. output current	IOHAV2	_	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	_	-100	mA	Total normal output	
"H" level Max. overall output current	∑Іон₂	_	-330	mA	Total high current output	
"H" level Avg. overall output current	∑lohav1	_	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑ I OHAV2	_	-250	mA	Total high current output, average value	*5
Power concumption	Pp	—	500	mW	MB90F598G	
Power consumption	PD	—	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*2: VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3: The maximum output current is a peak value for a corresponding pin.

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.


*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

*6:

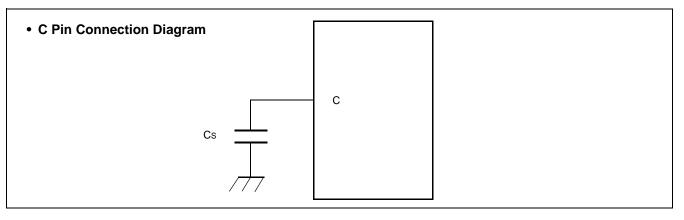
- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

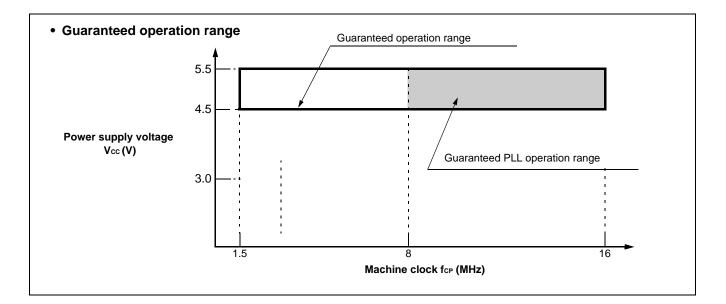
11.2 Recommended Conditions

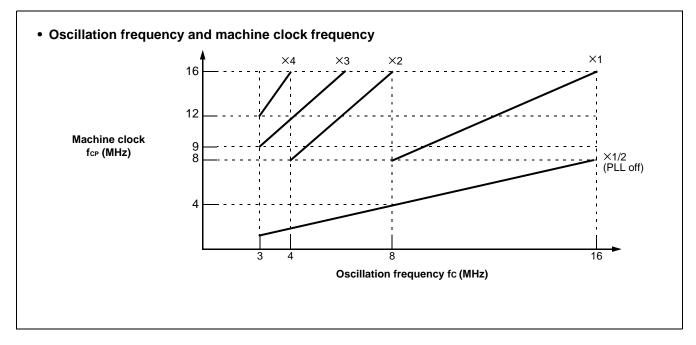

(Vss = AVss = 0.0 V)

Parameter	Symbol		Value		/alue Unit Remarks		
Farameter	Symbol	Min			Unit	itematiks	
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation	
Power supply voltage	AVcc	3.0	_	5.5	V	Maintains RAM data in stop mode	
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40	—	+85	°C		

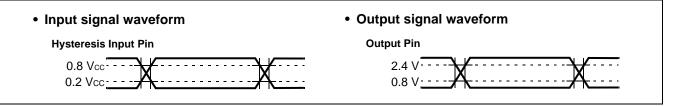
*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

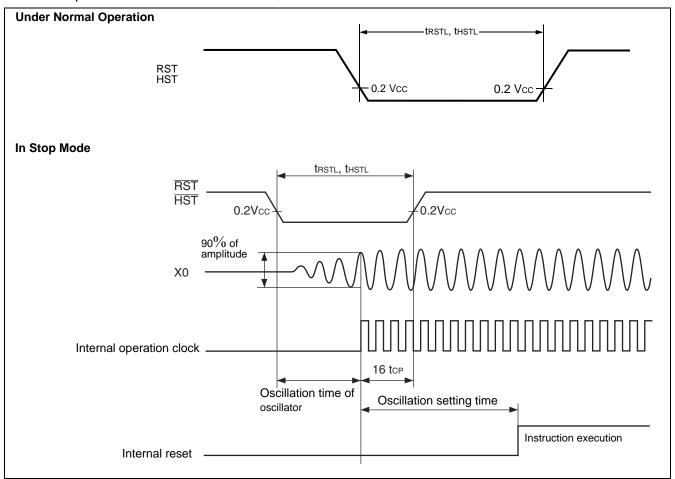

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.



11.3 DC Characteristics


$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85$									
Parameter	Symbol	Pin name	Condition		Value		Unit		
i arameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
Input H voltage	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V		
	VIHM	MD input pin	—	Vcc - 0.3	_	Vcc +0.3	V		
Input L voltage	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V		
	VILM	MD input pin	_	Vss - 0.3	-	Vss +0.3	V		
Output H	Vон1	Output pins except P70 to P87	Vcc = 4.5 V, Іон1 = -4.0 mA	Vcc - 0.5	_	_	V		
voltage	Vон2	P70 to P87	Vcc = 4.5 V, Іон ₂ = -30.0 mA	Vcc - 0.5	_	_	V		
Output L voltage	Vol1	Output pins except P70 to P87	Vcc = 4.5 V, IoL1 = 4.0 mA	_	_	0.4	V		
	Vol2	P70 to P87	Vcc = 4.5 V, Io∟₂ = 30.0 mA	_	_	0.5	V		

AC characteristics are set to the measured reference voltage values below.

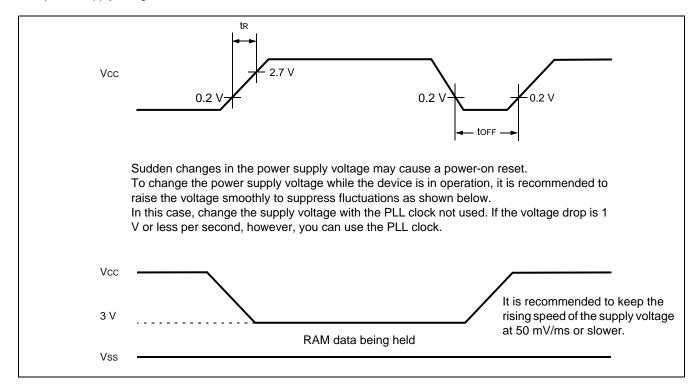

11.4.2 Reset and Hardware Standby Input

			$(Vcc = 5.0 V \pm$	10%, Vss	= AVss	$= 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85$				
Deremeter	Symbol	Pin name Value			Unit	Remarks				
Parameter Symb		Finitianie	Min	Max	Unit	rend KS				
		RST	16 tcp*1	—	ns	Under normal operation				
Reset input time	t rstl		Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode				
							16 tcp*1	—	ns	Under normal operation
Hardware standby input time	tнsт∟	t⊣s⊤∟ HST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	—	ms	In stop mode				

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

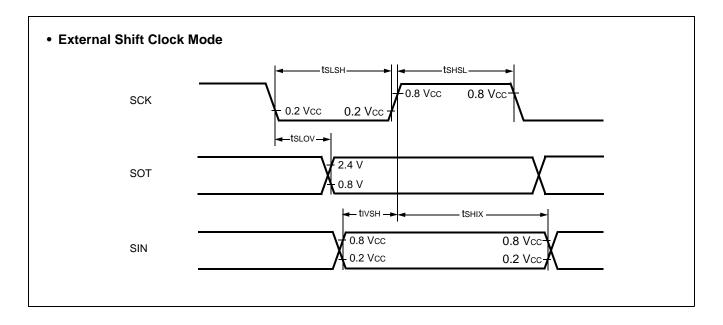

11.4.3 Power On Reset

11.4.3 FOWER ON RESEL			(Vo	c = 5.0	V±10%	6, Vss =	AVss = 0.0 V, $T_A = -40$ °C to +85	
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
Farameter	Symbol	Fin hame	Condition	Min	Max	Unit	Remarks	
Power on rise time	tR	Vcc		0.05	30	ms	*	
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation	

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

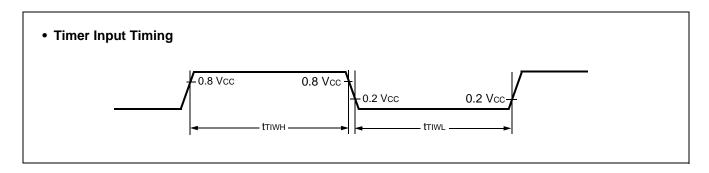
- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.



11.4.4 UART0/1, Serial I/O Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

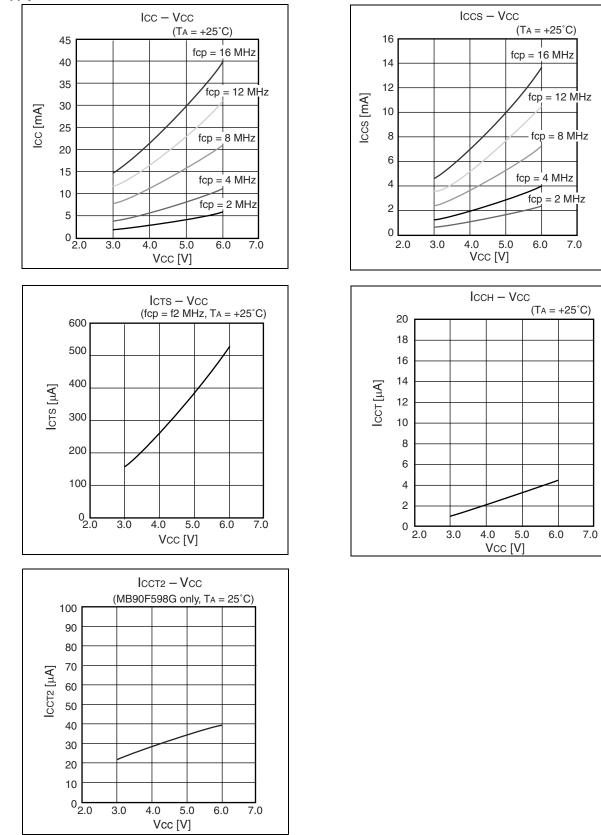
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
raianietei	Symbol	Finnanie	Condition	Min	Max	onic	itemarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT \ delay \ time$	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100	_	ns	
$SCK\uparrow\RightarrowValid\;SIN\;hold\;time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60		ns	



(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

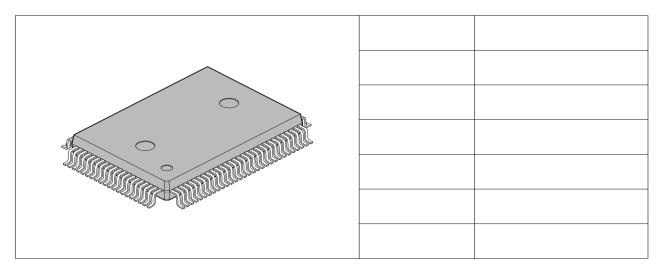
Parameter	Symbol Pin name	Condition	Va	lue	Unit	Remarks		
Parameter			Min	Max				
Innut nulos width	tтіwн	TIN0, TIN1			4 t _{CP}		20	
Input pulse width	t⊤ıw∟	IN0 to IN3		4 ICP	_	ns		

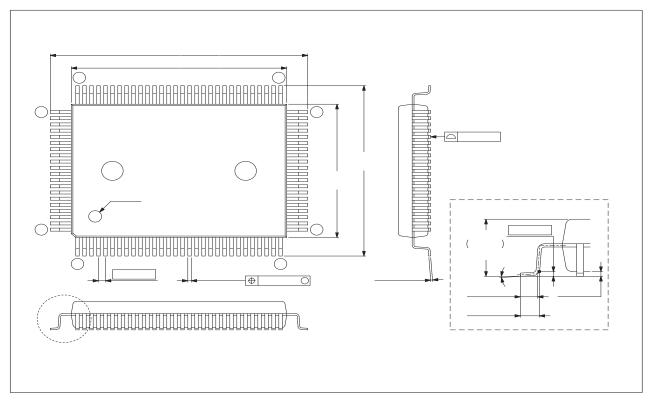

11.4.5 Trigger Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin name	Condition	Val	ue	Unit	Remarks							
Farameter	Parameter Symbol Pin name		Condition	Min	Мах			Unit					
Input pulse width	tтrgн	INT0 to INT7, ADTG	_	5 tcp	_	ns	Under normal operation						
input puise width	t trgl		ADTG	ADTG	ADTG	ADTG	ADTG	ADTG	ADTG		1		μs

Supply Current





13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
-	Deleted the old products, MB90598, MB90F598, and MB90V595.
-	Changed the series name; MB90595/595G series ? MB90595G series
-	Changed the following erroneous name. I/O timer \rightarrow 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode \rightarrow Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date ** _ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. *A 5537128 AKIH 11/30/2016 Updated to Cypress template