

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-185-er

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

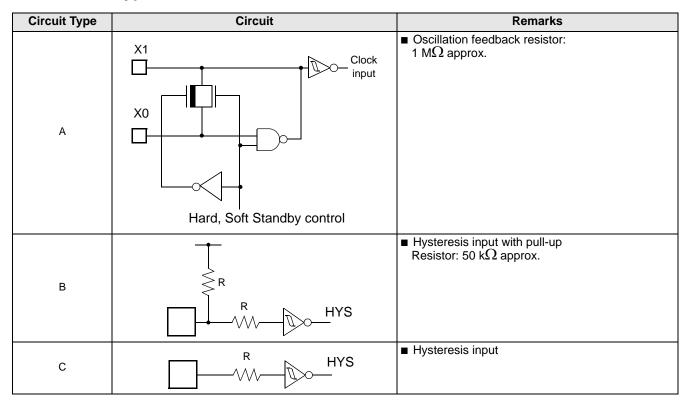
Contents

Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	14
Memory Space	
I/O Map	
Can Controller	
List of Control Registers	23
List of Message Buffers (ID Registers)	
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

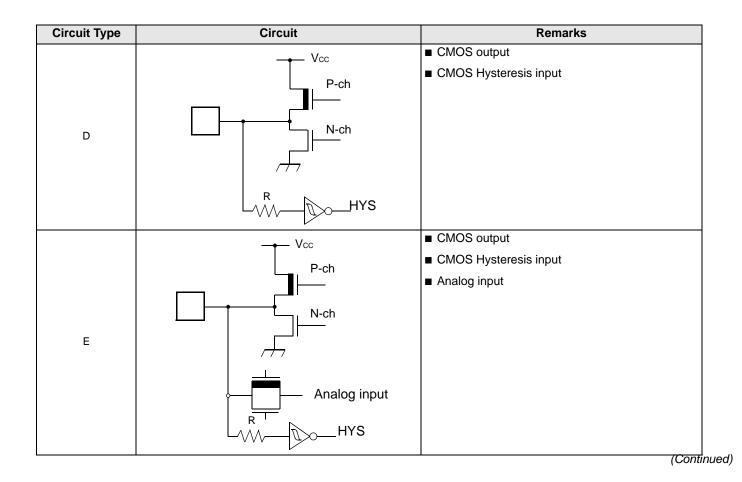
Electrical Characteristics	31
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	45
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	

3. Pin Description

Pin no.	Pin name	Circuit type	Function		
82	X0	٨			
83	X1	A	Oscillator pin		
77	RST	В	Reset input		
52	HST	С	Hardware standby input		
85 to 88	P00 to P03	G	General purpose IO		
00 10 00	IN0 to IN3	6	Inputs for the Input Captures		
89 to 92	P04 to P07	G	General purpose IO		
09 10 92	OUT0 to OUT3	9	Outputs for the Output Compares.		
93 to 98	P10 to P15	D	General purpose IO		
93 10 98	PPG0 to PPG5	d	Outputs for the Programmable Pulse Generators		
99	P16	D	General purpose IO		
33	TIN1	d	TIN input for the 16-bit Reload Timer 1		
100	P17	D	General purpose IO		
100	TOT1	d	TOT output for the 16-bit Reload Timer 1		
1 to 8	P20 to P27	G	General purpose IO		
9 to 10	P30 to P31	G	General purpose IO		
12 to 16	P32 to P36	G	General purpose IO		
17	P37	D	General purpose IO		
18	P40	G	General purpose IO		
10	SOT0	0	SOT output for UART 0		
19	P41	G	General purpose IO		
19	SCK0	0	SCK input/output for UART 0		
20	P42	G	General purpose IO		
20	SIN0	0	SIN input for UART 0		
21	P43	G	General purpose IO		
21	SIN1	0	SIN input for UART 1		
22	P44	G	General purpose IO		
22	SCK1	0	SCK input/output for UART 1		
24	P45	G	General purpose IO		
24	SOT1		SOT output for UART 1		
25	P46	G	General purpose IO		
20	25 SOT2 G SOT		SOT output for the Serial IO		
26	26 P47 G General purpose IO		General purpose IO		
20	SCK2	5	SCK input/output for the Serial IO		



Pin no.	Pin name	Circuit type	Function		
20	P50	D	General purpose IO		
28	SIN2	D	SIN Input for the Serial IO		
29 to 32	P51 to P54	D	General purpose IO		
291032	INT4 to INT7	D	External interrupt input for INT4 to INT7		
33	P55	D	General purpose IO		
	ADTG	ם	Input for the external trigger of the A/D Converter		
38 to 41	P60 to P63	E	General purpose IO		
30 10 41	AN0 to AN3	L	Inputs for the A/D Converter		
43 to 46	P64 to P67	E	General purpose IO		
43 10 40	AN4 to AN7	L	Inputs for the A/D Converter		
47	P56	D	General purpose IO		
47	TIN0	ם	TIN input for the 16-bit Reload Timer 0		
48	P57	D	General purpose IO		
40	ΤΟΤΟ	D	TOT output for the 16-bit Reload Timer 0		
	P70 to P73		General purpose IO		
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0		
	P74 to P77		General purpose IO		
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1		
	P80 to P83		General purpose IO		
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2		
	P84 to P87		General purpose IO		
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3		
74	P90	5	General purpose IO		
74	ТХ	D	TX output for CAN Interface		
75	P91	6	General purpose IO		
75 RX D RX Input for CAN Interface		RX input for CAN Interface			



Pin no.	Pin name	Circuit type	Function	
76	P92	D	General purpose IO	
70	INT0		External interrupt input for INT0	
78 to 80	P93 to P95	D	General purpose IO	
70 10 00	INT1 to INT3		External interrupt input for INT1 to INT3	
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)	
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)	
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter	
37	AVss	Power supply	Dedicated ground pin for the A/D Converter	
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter	
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter	
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to V_{CC} or $V_{SS}.$	
51	MD2	н	Operating mode selection input pin. This pin should be connected to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}.$	
27	С	_	External capacitor pin. A capacitor of 0.1μ F should be connected to this pin and Vss.	
23, 84	Vcc	Power supply	Power supply pins (5.0 V).	
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).	

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _W HYS	
		■ CMOS output
	Vcc	CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
	N-ch	
G		
Ũ		
	R	
	HYS	
	R	
		 Hysteresis input
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
		(except MB90F598G)
н		
	R	
	· · · ·	

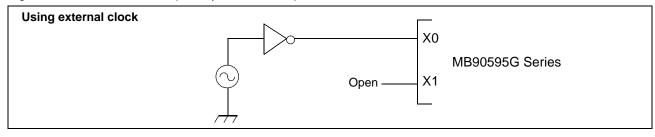
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

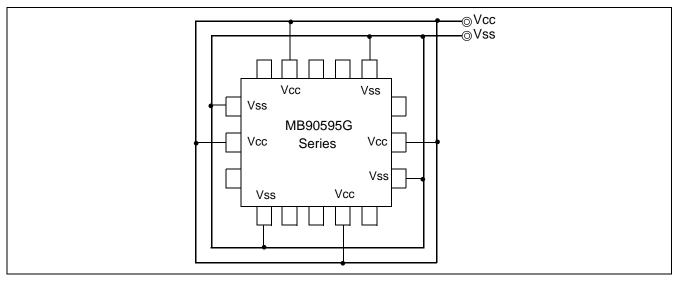

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

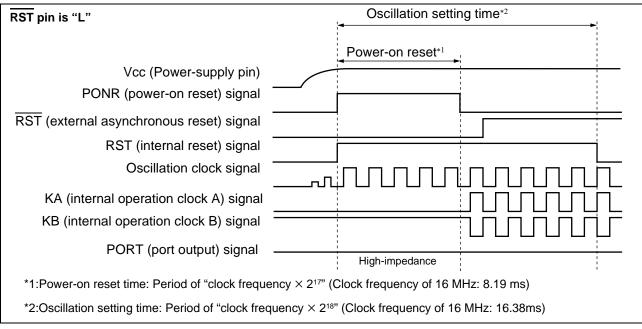
Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)


In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

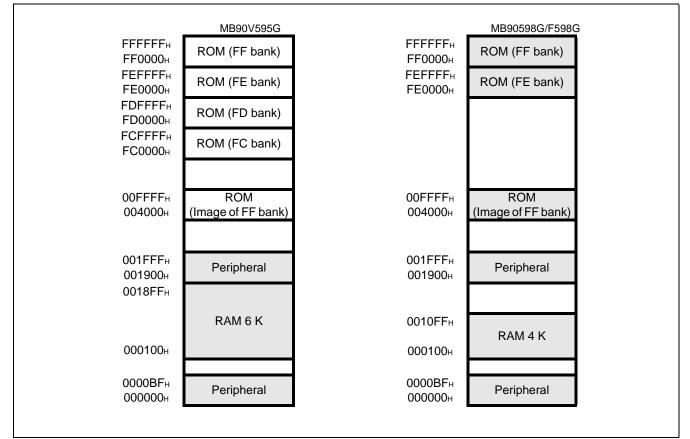
In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode


If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

Address	Register	Abbreviation	Access	Peripheral	Initial value
6 F н	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70 н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXAB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXAB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 0 _B
74 H	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXXAB
75 н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXXAB
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 0 _B
78 H	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000B
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W	Stepping Motor Controller 3	XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W		XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W		000000B
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controll	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0 _B
9 F н	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0
АОн	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	00011000в
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100в
A2н to A7н		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	ХХХХХ 1 1 1в
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAH to ADH		Reserved			•
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 _B
AFн		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value	
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX	
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX	
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX	
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX	
1930н to 19FFн		Re	served			
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller		
1B00н to 1BFFн	CAN Controller. Refer to section about CAN Controller					
1C00H to $1EFFH$	Reserved					
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX	
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX	
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX	
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX	
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX	
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB	
1FF6н to 1FFFн	Reserved					

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

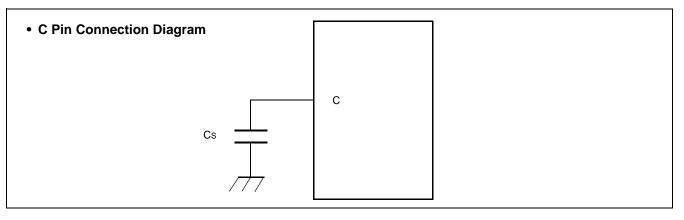
Address	Register	Abbreviation	Access	Initial Value
001B08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX
001B09н		IDEIX	1.7, 4.4	
001В0Ан	- Transmit RTR register	TRTRR	R/W	0000000 000000₀
001В0Вн			1.7, 4.4	000000000000000000000000000000000000000
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX
001B0Dн		NEWIN		
001В0Ен	Transmit interrupt enable register	TIER	R/W	0000000 0000000 _в
001B0Fн		HER	r/ vv	0000000 000000B
001B10н				XXXXXXXX XXXXXXXX
001B11н	Acceptance mask select register	AMSR	R/W	
001В12н		AWISK		XXXXXXXX XXXXXXXX
001B13н				
001B14н				XXXXXXXX XXXXXXXX
001B15⊦		AMRO	R/W	ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΒ
001B16⊦	 Acceptance mask register 0 	AWRU	R/VV	XXXXX XXXXXXXXB
001B17н				ХХХХХ ХХХХХХХХВ
001B18⊦				
001B19⊦			DAA	XXXXXXXX XXXXXXXXXB
001B1Aн	Acceptance mask register 1 AMR1		R/W	
001B1Bн				XXXXX XXXXXXXXB

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value	
001А00н to 001А1Fн	General-purpose RAM		R/W	XXXXXXXXB to XXXXXXXB	
001A20н				XXXXXXXX XXXXXXXB	
001A21н	ID register 0	IDR0 R/W			
001A22н		IDRO			XXXXX XXXXXXXXB
001А23н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
001A24н				XXXXXXXX XXXXXXXX	
001A25н	ID register 1	IDR1 R/W			
001A26н			XXXXX XXXXXXXXB		
001А27 н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
001A28н		IDR2 R/			XXXXXXXX XXXXXXXB
001A29н	ID register 2		R/W		
001А2Ан			FX/ V V	XXXXX XXXXXXXXB	
001А2Вн			******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Address	Register	Abbreviation	Access	Initial Value
001A2Cн				XXXXXXXX XXXXXXX
001A2Dн	ID register 3	IDR3	R/W	
001А2Ен		ibito	10,00	XXXXX XXXXXXXXB
001A2Fн				
001A30н				XXXXXXXX XXXXXXXB
001А31н	ID register 4	IDR4	R/W	
001А32н			10.00	XXXXX XXXXXXXXB
001А33н				
001А34н			R/W	XXXXXXXX XXXXXXXB
001A35н	ID register 5	IDR5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
001A36н		ibito		XXXXX XXXXXXXXB
001А37н				
001A38н				XXXXXXXX XXXXXXXB
001А39н	ID register 6	IDR6	R/W	
001АЗАн				XXXXX XXXXXXXXB
001А3Вн				
001А3Cн				XXXXXXXX XXXXXXXB
001А3Dн	ID register 7	IDR7	R/W	
001А3Ен			F\/ VV	XXXXX XXXXXXXXB
001А3Fн]			(Conti

11.2 Recommended Conditions


(Vss = AVss = 0.0 V)

Parameter	Symbol		Value		Unit	Remarks	
Farameter	Symbol	Min	Тур	Max	Unit	Reliai ks	
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation	
Power supply voltage	AVcc	3.0	_	5.5	V	Maintains RAM data in stop mode	
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40	—	+85	°C		

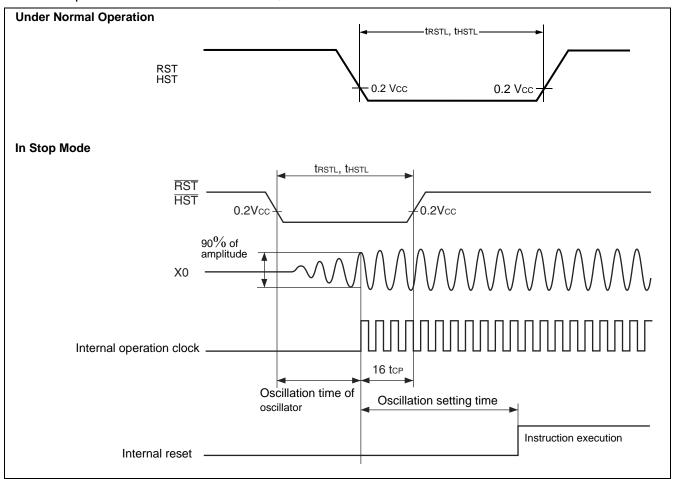
*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +8000 \text{ to } +80000 \text{ to } +800000000000000000000000000000000000$										
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks			
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks			
Input H voltage	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V				
	VIHM	MD input pin	—	Vcc - 0.3	_	Vcc +0.3	V				
Input L voltage	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V				
VILM		MD input pin	_	Vss - 0.3	-	Vss +0.3	V				
Output H	Vон1	Output pins except P70 to P87	Vcc = 4.5 V, Іон1 = -4.0 mA	Vcc - 0.5	_	_	V				
voltage	Vон2	P70 to P87	Vcc = 4.5 V, Іон ₂ = -30.0 mA	Vcc - 0.5	_	_	V				
Output L	Vol1	Output pins except P70 to P87	Vcc = 4.5 V, IoL1 = 4.0 mA	_	_	0.4	V				
voltage	Vol2	P70 to P87	Vcc = 4.5 V, Io∟₂ = 30.0 mA	_	_	0.5	V				

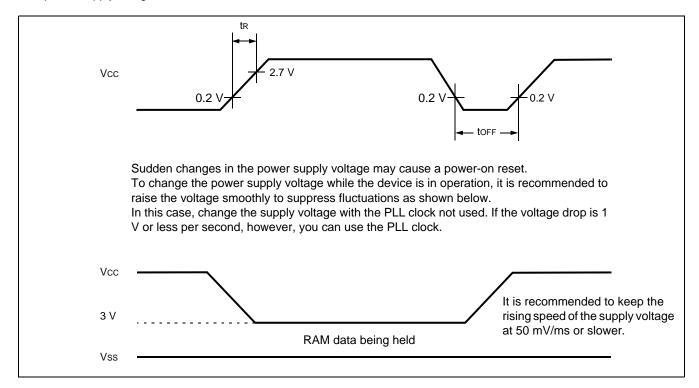

11.4.2 Reset and Hardware Standby Input

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85$										
Parameter	Symbol	Pin name	Value		Unit	Remarks				
Falametei	Symbol	Finitianie	Min	Max	Unit	Remarks				
		RST	16 tcp*1	—	ns	Under normal operation				
Reset input time	t rstl		Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode				
			16 tcp*1	—	ns	Under normal operation				
Hardware standby input time	tнsт∟	HST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	—	ms	In stop mode				

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

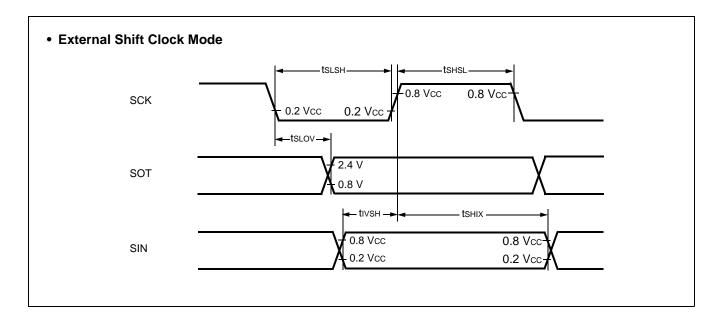

11.4.3 Power On Reset

11.4.3 FOWER ON RESEL	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +85 ^{\circ}\text{C}$										
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks				
Falameter	Symbol	Fin hame	Condition	Min	Max	Unit	Nellia KS				
Power on rise time	tR	Vcc		0.05	30	ms	*				
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation				

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

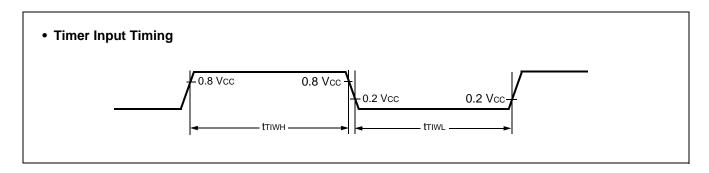
- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.



11.4.4 UART0/1, Serial I/O Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

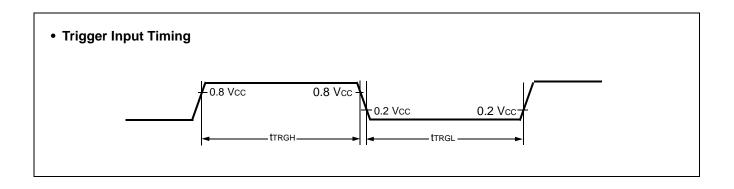
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
raianietei	Symbol	Finnanie	Condition	Min	Max	Onit	itema ks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT \ delay \ time$	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100	_	ns	
$SCK\uparrow\RightarrowValid\;SIN\;hold\;time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60		ns	



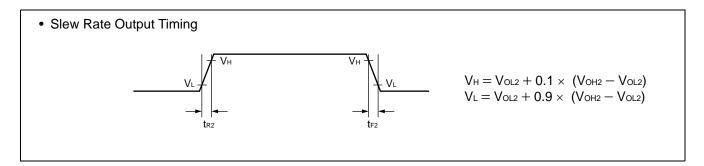
(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Va	lue	Unit	Remarks	
Falameter	Symbol	Fin hame	Condition	Min	Max	Unit	Remarks	
Input pulse width	tтіwн	TIN0, TIN1		4 t _{CP}		20		
mput puise width	t⊤ıw∟	IN0 to IN3		4 ICP	_	ns		



11.4.5 Trigger Input Timing


 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol Pin name Condition		Condition	Val	ue	Unit	Remarks	
Farameter	Symbol			Min	Мах	Unit	Remarks	
Input pulse width	tтrgн	INT0 to INT7,	_	5 tcp	_	ns	Under normal operation	
input puise width	t trgl	ADTG	—	1		μs	In stop mode	

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) $(V_{CC} = 5.0 \text{ V} \pm 10 \text{ \%}, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$									
Parameter	Symbol	Pin name	Condition	Value Min Typ Max			Unit	Remarks	
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name			Unit	Remarks	
Faiameter	bol	Fill hame	Min	Тур	Max	Unit	Rellidiks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	_	±5.0	LSB	
Nonlinearity error	_	—	_	_	±2.5	LSB	
Differential linearity error	—	—	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	—	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	

11.8 Flash memory

■ Erase and programming performance

Parameter	Condition		Value		Unit	Remarks		
Falameter	Condition	Min	Тур	Max	Onit			
Sector erase time		_	1	15	s	MB90F598G	Excludes 00H programming prior erasure	
Chip erase time	$T_A = +25 \ ^{\circ}C,$ $V_{CC} = 5.0 \ V$	_	5	_	s	MB90F598G	Excludes 00H programming prior	
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead	
Erase/Program cycle	—	10000	_	—	cycle			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	com/arm
Automotive cypress.com/au	tomotive
Clocks & Buffers cypress.co	m/clocks
Interface cypress.com/	interface
Internet of Things cypress	s.com/iot
Lighting & Power Control cypress.com/po	werpsoc
Memory cypress.com	/memory
PSoC cypress.c	om/psoc
Touch Sensing cypress.co	om/touch
USB Controllers cypress.	com/usb
Wireless/RF cypress.com	/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.