

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-187e1

Features	MB90598G	MB90F598G	MB90V595G				
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW						
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	evel input, or an "L" level input.					
Serial IO		Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) SB first/MSB first					
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms					
Flash Memory	Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to poir Memory Boot block configuration Erase can be performed on each block	Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage					
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by						
Process		CMOS					
Power supply voltage for operation*2	+5 V±10 %						
Package	QFP-100	QFP-100 PGA-256					

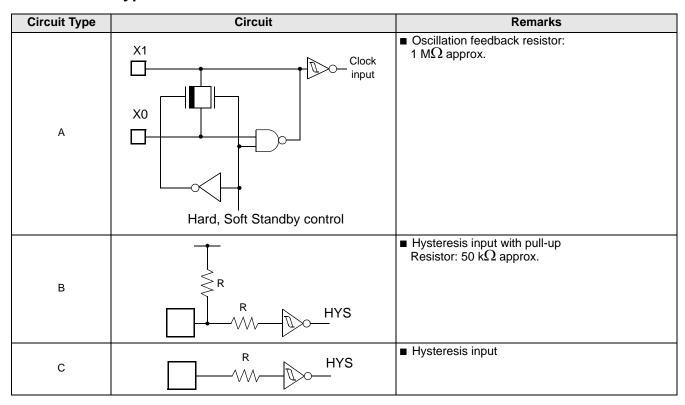
^{*1:} It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

^{*2:} Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

3. Pin Description

Pin no.	Pin name	Circuit type	Function			
82	X0					
83	X1	А	Oscillator pin			
77	RST	В	Reset input			
52	HST	С	Hardware standby input			
05 to 00	P00 to P03	0	General purpose IO			
85 to 88	IN0 to IN3	G	Inputs for the Input Captures			
89 to 92	P04 to P07	0	General purpose IO			
89 10 92	OUT0 to OUT3	G	Outputs for the Output Compares.			
00 to 00	P10 to P15	5	General purpose IO			
93 to 98	PPG0 to PPG5	D	Outputs for the Programmable Pulse Generators			
00	P16	5	General purpose IO			
99	TIN1	D	TIN input for the 16-bit Reload Timer 1			
400	P17	5	General purpose IO			
100	TOT1	D	TOT output for the 16-bit Reload Timer 1			
1 to 8	P20 to P27	G	General purpose IO			
9 to 10	P30 to P31	G	General purpose IO			
12 to 16	P32 to P36	G	General purpose IO			
17	P37	D	General purpose IO			
40	P40	0	General purpose IO			
18	SOT0	G	SOT output for UART 0			
40	P41	0	General purpose IO			
19	SCK0	G	SCK input/output for UART 0			
200	P42	0	General purpose IO			
20	SIN0	G	SIN input for UART 0			
04	P43	0	General purpose IO			
21	SIN1	G	SIN input for UART 1			
00	P44	0	General purpose IO			
22	SCK1	G	SCK input/output for UART 1			
0.4	P45	0	General purpose IO			
24	SOT1	G	SOT output for UART 1			
25	P46		General purpose IO			
25	SOT2	G	SOT output for the Serial IO			
26	P47		General purpose IO			
26	SCK2	G	SCK input/output for the Serial IO			

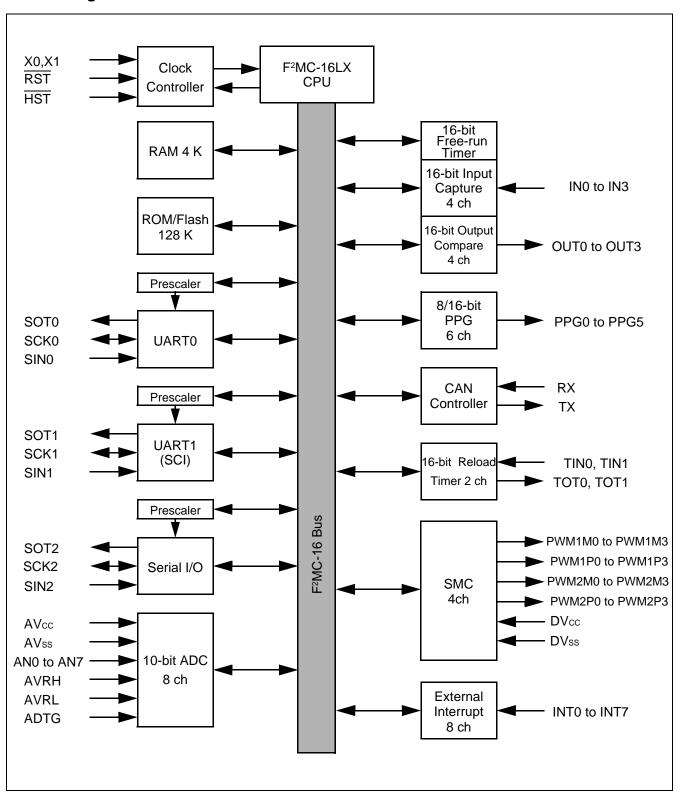


Pin no.	Pin name	Circuit type	Function		
00	P50	Г.	General purpose IO		
28	SIN2	D	SIN Input for the Serial IO		
00.100	P51 to P54	1	General purpose IO		
29 to 32	INT4 to INT7	D	External interrupt input for INT4 to INT7		
20	P55	<u> </u>	General purpose IO		
33	ADTG	D	Input for the external trigger of the A/D Converter		
20 to 44	P60 to P63		General purpose IO		
38 to 41	AN0 to AN3	E	Inputs for the A/D Converter		
40.1- 40	P64 to P67		General purpose IO		
43 to 46	AN4 to AN7	E	Inputs for the A/D Converter		
47	P56	2	General purpose IO		
47	TIN0	D	TIN input for the 16-bit Reload Timer 0		
40	P57	2	General purpose IO		
48	TOT0	D	TOT output for the 16-bit Reload Timer 0		
	P70 to P73		General purpose IO		
54 to 57 PWM1P0 PWM1M0 PWM2P0 PWM2M0		F	Output for Stepper Motor Controller channel 0		
	P74 to P77		General purpose IO		
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1		
	P80 to P83		General purpose IO		
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2		
	P84 to P87		General purpose IO		
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3		
7.4	P90	D	General purpose IO		
74	TX	D	TX output for CAN Interface		
75	P91	r.	General purpose IO		
75	RX	D	RX input for CAN Interface		

Pin no.	Pin name	Circuit type	Function				
76	P92	D	General purpose IO				
76	INTO		External interrupt input for INT0				
78 to 80	P93 to P95	D	General purpose IO				
78 10 80	INT1 to INT3	D	External interrupt input for INT1 to INT3				
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)				
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)				
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter				
37	AVss	Power supply	Dedicated ground pin for the A/D Converter				
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter				
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter				
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to Vcc or Vss.				
51	MD2	Н	Operating mode selection input pin. This pin should be connected to Vcc or Vss.				
27	С	_	External capacitor pin. A capacitor of $0.1\mu\text{F}$ should be connected to this pin and Vss.				
23, 84	Vcc	Power supply	Power supply pins (5.0 V).				
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).				

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
D	V _{cc} P-ch N-ch N-ch	■ CMOS output ■ CMOS Hysteresis input
E	P-ch N-ch Analog input HYS	 ■ CMOS output ■ CMOS Hysteresis input ■ Analog input


Document Number: 002-07700 Rev. *A

Circuit Type	Circuit	Remarks
	V	■ CMOS high current output
F	P-ch High current N-ch HYS	■ CMOS Hysteresis input
		■ CMOS output
	— Vcc	■ CMOS Hysteresis input
G	P-ch N-ch R HYS R T TTL	■ TTL input (MB90F598G, only in Flash mode)
Н	R HYS	■ Hysteresis input Pull-down Resistor: 50 kΩ approx. (except MB90F598G)

6. Block Diagram

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		•
10н	Port 0 Direction Register	DDR0	R/W	Port 0	0 0 0 0 0 0 0 0в
11н	Port 1 Direction Register	DDR1	R/W	Port 1	0 0 0 0 0 0 0 0в
12н	Port 2 Direction Register	DDR2	R/W	Port 2	0 0 0 0 0 0 0 0в
13н	Port 3 Direction Register	DDR3	R/W	Port 3	0 0 0 0 0 0 0 0в
14н	Port 4 Direction Register	DDR4	R/W	Port 4	0 0 0 0 0 0 0 0в
15н	Port 5 Direction Register	DDR5	R/W	Port 5	0 0 0 0 0 0 0 0в
16н	Port 6 Direction Register	DDR6	R/W	Port 6	0 0 0 0 0 0 0 0в
17н	Port 7 Direction Register	DDR7	R/W	Port 7	0 0 0 0 0 0 0 0в
18н	Port 8 Direction Register	DDR8	R/W	Port 8	0 0 0 0 0 0 0 0в
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000
1Ан		Reserv	ed		
1Вн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111
1Сн to 1Fн		Reserv	ed		
20н	Serial Mode Control Register 0	UMC0	R/W		0 0 0 0 0 1 0 0в
21н	Serial status Register 0	USR0	R/W	UART0	0 0 0 1 0 0 0 0в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UARTO	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0 0 0 0 0 0 0 X _B
24н	Serial Mode Register 1	SMR1	R/W		0 0 0 0 0 0 0 0в
25н	Serial Control Register 1	SCR1	R/W		0 0 0 0 0 1 0 0в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		0 0 0 0 1 _ 0 Ов
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXXB
1911н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXXB
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXXB
1913н	Reload Register H	PRLH9	R/W		XXXXXXXXB
1914н	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXXB
1915н	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXXB
1916н	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX
1917н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX _B
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXX
1921н	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXX
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX
1924н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXX
1925н	Input Capture Register 2 (high-order)	IPCP2	R	January Continue 0/0	XXXXXXXX
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXX
1927н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXX
1928н	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXX
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W	Output Compare 0/1	XXXXXXXX
192Ан	Output Compare Register 1 (low-order)	OCCP1	R/W	Output Compare 0/1	XXXXXXXX
192Вн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXXB

Address	Register	Abbreviation	Access	Initial Value	
001А40н				VVVVVV VVVVVV	
001А41н	ID register 8	IDR8	R/W	XXXXXXXX XXXXXXXB	
001А42н	Tib register o	IDRO	I K/VV	XXXXX XXXXXXXXB	
001А43н			**************************************		
001А44н				XXXXXXXX XXXXXXXX	
001А45н	ID register 9	IDR9	R/W	VVVVVVV VVVVVV	
001А46н	ID register 9	IDIX9	IX/VV	XXXXX XXXXXXXXB	
001А47н					
001А48н				XXXXXXXX XXXXXXXX	
001А49н	ID register 10	IDR10	R/W	XXXXXXX XXXXXX	
001А4Ан	To register 10	IDICIO	IX/VV	XXXXX XXXXXXXXB	
001А4Вн				XXXX XXXXXXX	
001А4Сн			R/W	XXXXXXX XXXXXXX _B	
001А4Dн	ID register 11	IDR11		7,5000000000000000000000000000000000000	
001А4Ен	Togister 11			XXXXX XXXXXXXXB	
001А4Гн				XXXXX XXXXXXX	
001А50н			R/W	XXXXXXX XXXXXXX	
001А51н	ID register 12	IDR12		AAAAAAAAAAAAAA	
001А52н	Togister 12		10,00	XXXXX XXXXXXXXB	
001А53н				70000 7000000	
001А54н				XXXXXXXX XXXXXXXX	
001А55н	ID register 13	IDR13	R/W		
001А56н				XXXXX XXXXXXXXB	
001А57н					
001А58н				XXXXXXXX XXXXXXXX	
001А59н	ID register 14	IDR14	R/W		
001А5Ан	_			XXXXX XXXXXXXXB	
001А5Вн					
001А5Сн				XXXXXXXX XXXXXXXX	
001A5Dн	ID register 15	IDR15	R/W		
001А5Ен	.29			XXXXX XXXXXXXXB	
001А5Гн					

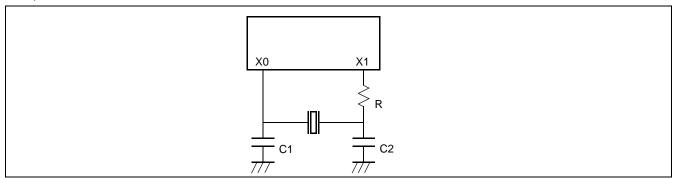
10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

lutarii	El ² OS	Interru	pt vector	Interrupt control register	
Interrupt source	clear	Number	Address	Number	Address
Reset	N/A	# 08	FFFFDCH		
INT9 instruction	N/A	# 09	FFFFD8 _H		
Exception	N/A	# 10	FFFFD4 _H		
CAN RX	N/A	# 11	FFFFD0 _H	LODGO	200000
CAN TX/NS	N/A	# 12	FFFFCCH	ICR00	0000В0н
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10004	0000004
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000В1н
16-bit Reload Timer 0	*1	# 15	FFFFC0 _H	IODOO	000000
8/10-bit A/D Converter	*1	# 16	FFFFBCH	ICR02	0000В2н
16-bit Free-run Timer	N/A	# 17	FFFFB8 _H	LODGO	200000
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4 _H	ICR03	0000ВЗн
Serial I/O	*1	# 19	FFFFB0 _H	10004	0000004
External Interrupt (INT4/INT5)	*1	# 20	FFFFACH	ICR04	0000В4н
Input Capture 0	*1	# 21	FFFFA8 _H	IODOS	0000В5н
8/16-bit PPG 0/1	N/A	# 22	FFFFA4 _H	ICR05	
Output Compare 0	*1	# 23	FFFFA0 _H	LODGO	0000В6н
8/16-bit PPG 2/3	N/A	# 24	FFFF9C _H	ICR06	
External Interrupt (INT6/INT7)	*1	# 25	FFFF98⊦	10007	
Input Capture 1	*1	# 26	FFFF94 _H	ICR07	0000В7н
8/16-bit PPG 4/5	N/A	# 27	FFFF90⊦	LODGO	
Output Compare 1	*1	# 28	FFFF8C _H	ICR08	0000В8н
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H		
Input Capture 2	*1	# 30	FFFF84 _H	ICR09	0000В9н
8/16-bit PPG 8/9	N/A	# 31	FFFF80 _H	10040	0000004
Output Compare 2	*1	# 32	FFFF7C _H	ICR10	0000ВАн
Input Capture 3	*1	# 33	FFFF78⊦	10044	000000
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	ICR11	0000ВВн
Output Compare 3	*1	# 35	FFFF70 _H	10040	000000
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	ICR12	0000ВСн
UART 0 RX	*2	# 37	FFFF68 _H	10510	000055
UART 0 TX	*1	# 38	FFFF64 _H	ICR13	0000ВDн
UART 1 RX	*2	# 39	FFFF60⊦	10044	000005
UART 1 TX	*1	# 40	FFFF5C _H	ICR14	0000ВЕн
Flash Memory	N/A	# 41	FFFF58⊦	10045	000005
Delayed interrupt	N/A	# 42	FFFF54 _H	ICR15	0000ВFн
		1			<u> </u>

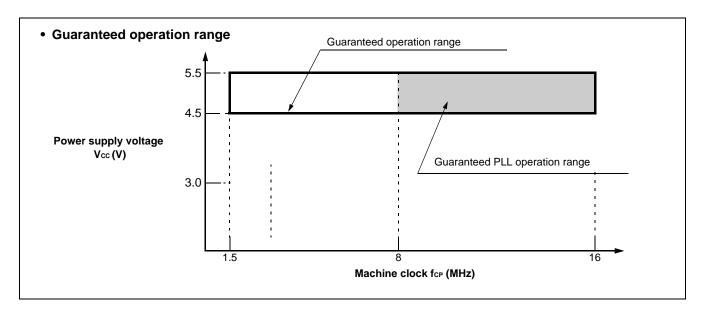
^{*1:} The interrupt request flag is cleared by the El²OS interrupt clear signal.

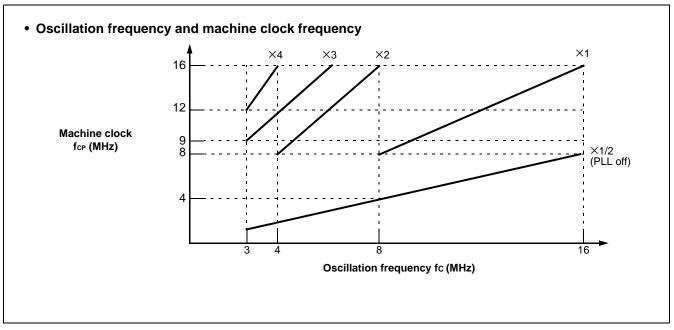
N/A:The interrupt request flag is not cleared by the El²OS interrupt clear signal.

^{*2:} The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

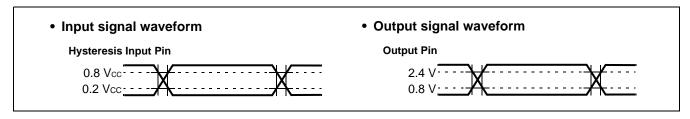

Notes:

- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
- If El²OS is enabled, El²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same El²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the El²OS, the other interrupt should be disabled.


Document Number: 002-07700 Rev. *A Page 30 of 51



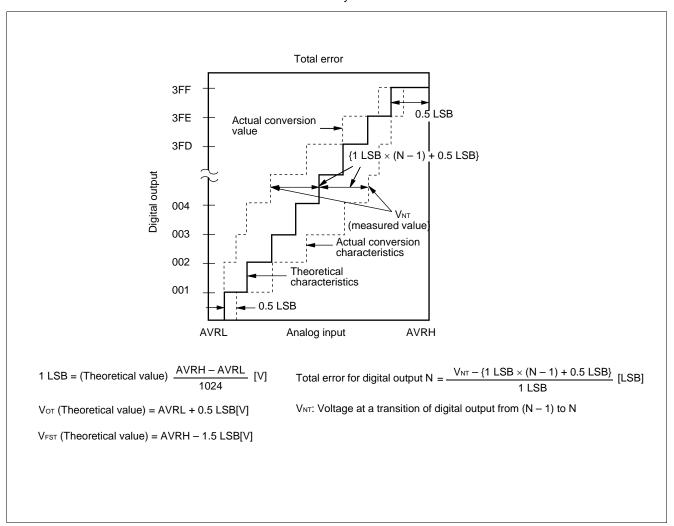
■ Example of Oscillation circuit



AC characteristics are set to the measured reference voltage values below.

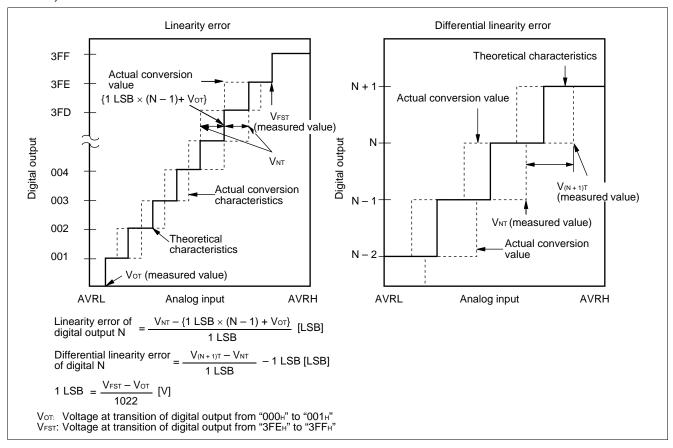
Parameter	Sym-	Pin name	Value				Remarks
Parameter	bol	rin name	Min	Тур	Max	Unit	Remarks
Poforonco voltago rango	_	AVRH	AVRL + 3.0	_	AVcc	V	
Reference voltage range	_	AVRL	0	_	AVRH - 3.0	V	
Power supply current	lΑ	AVcc	_	5	_	mA	
Fower supply current	Іан	AVcc	_	_	5	μΑ	*
	l _R	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
Reference voltage current			_	140	600	μΑ	MB90598G
	Iгн	AVRH		_	5	μΑ	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

^{*:} When not operating A/D converter, this is the current (Vcc = AVcc = AVRH = 5.0 V) when the CPU is stopped.

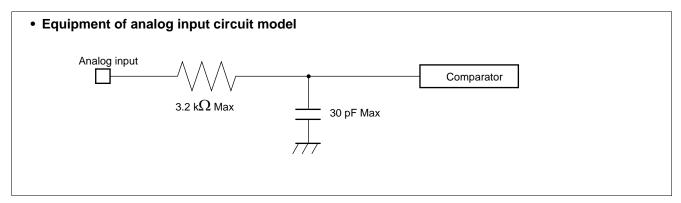


11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.


(Continued)

11.7 Notes on Using A/D Converter

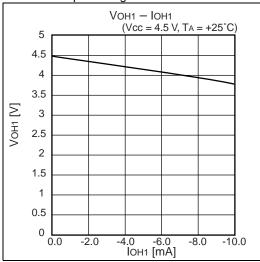
Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor. When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = 4.00 μs @machine clock of 16 MHz).

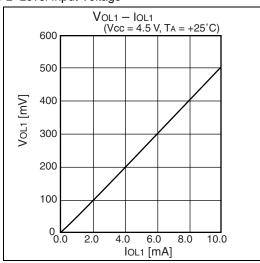
■ Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.

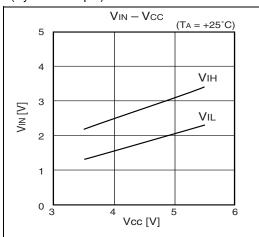
11.8 Flash memory

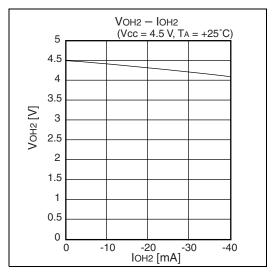

■ Erase and programming performance

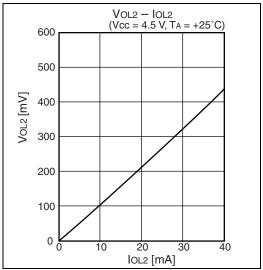
Parameter	Condition	Value			Unit	Remarks	
		Min	Тур	Max	Onit	Remarks	
Sector erase time		_	1	15	s	MB90F598G	Excludes 00H programming prior erasure
Chip erase time	$T_A = +25$ °C, $V_{CC} = 5.0 \text{ V}$	_	5	_	s	MB90F598G	Excludes 00H programming prior
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead
Erase/Program cycle	_	10000	-	_	cycle		



12. Example Characteristics


■ H" Level Output Voltage




■ L" Level Input Voltage

■ H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results		
_	Deleted the old products, MB90598, MB90F598, and MB90V595.		
_	Changed the series name; MB90595/595G series ? MB90595G series		
_	Changed the following erroneous name. I/O timer → 16-bit Free-run Timer		
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode → Watch mode		
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.		
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing		
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc		
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".		

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F ² MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	_	AKIH	09/26/2008	Migrated to Cypress and assigned document number 002-07700. No change to document contents or format.			
*A	5537128	AKIH	11/30/2016	Updated to Cypress template			

Document Number: 002-07700 Rev. *A Page 50 of 51