

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-g-194e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Description

Pin no.	Pin name	Circuit type	Function
82	X0	٨	
83	X1	A	Oscillator pin
77	RST	В	Reset input
52	HST	С	Hardware standby input
85 to 88	P00 to P03	G	General purpose IO
00 10 00	IN0 to IN3	6	Inputs for the Input Captures
89 to 92	P04 to P07	G	General purpose IO
09 10 92	OUT0 to OUT3	9	Outputs for the Output Compares.
93 to 98	P10 to P15	D	General purpose IO
93 10 98	PPG0 to PPG5	d	Outputs for the Programmable Pulse Generators
99	P16	D	General purpose IO
33	TIN1	d	TIN input for the 16-bit Reload Timer 1
100	P17	D	General purpose IO
100	TOT1	d	TOT output for the 16-bit Reload Timer 1
1 to 8	P20 to P27	G	General purpose IO
9 to 10	P30 to P31	G	General purpose IO
12 to 16	P32 to P36	G	General purpose IO
17	P37	D	General purpose IO
18	P40	G	General purpose IO
10	SOT0	0	SOT output for UART 0
19	P41	G	General purpose IO
19	SCK0	0	SCK input/output for UART 0
20	P42	G	General purpose IO
20	SIN0	0	SIN input for UART 0
21	P43	G	General purpose IO
21	SIN1	0	SIN input for UART 1
22	P44	G	General purpose IO
22	SCK1	0	SCK input/output for UART 1
24	P45	G	General purpose IO
24	SOT1	6	SOT output for UART 1
25	P46	G	General purpose IO
20	SOT2	5	SOT output for the Serial IO
26	P47	G	General purpose IO
20	SCK2	5	SCK input/output for the Serial IO

Pin no.	Pin name	Circuit type	Function
20	P50	D	General purpose IO
28	SIN2	D	SIN Input for the Serial IO
29 to 32	P51 to P54	D	General purpose IO
291032	INT4 to INT7	D	External interrupt input for INT4 to INT7
33	P55	D	General purpose IO
	ADTG	ם	Input for the external trigger of the A/D Converter
38 to 41	P60 to P63	E	General purpose IO
30 10 41	AN0 to AN3	L	Inputs for the A/D Converter
43 to 46	P64 to P67	E	General purpose IO
43 10 40	AN4 to AN7	L	Inputs for the A/D Converter
47	P56	D	General purpose IO
47	TIN0	ם	TIN input for the 16-bit Reload Timer 0
48	P57	D	General purpose IO
40	ΤΟΤΟ	D	TOT output for the 16-bit Reload Timer 0
	P70 to P73		General purpose IO
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0
	P74 to P77		General purpose IO
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1
	P80 to P83		General purpose IO
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2
	P84 to P87		General purpose IO
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3
74	P90	5	General purpose IO
74	ТХ	D	TX output for CAN Interface
75	P91	6	General purpose IO
75	RX	D	RX input for CAN Interface

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

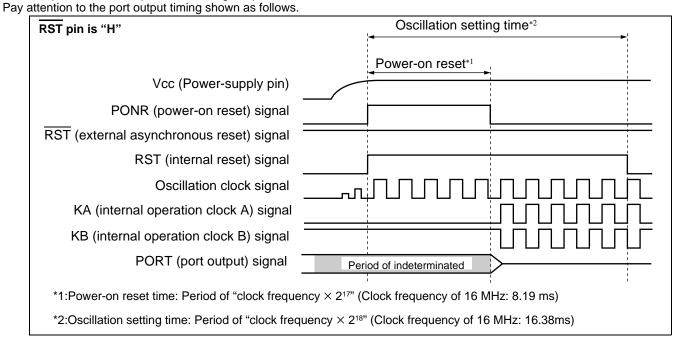
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

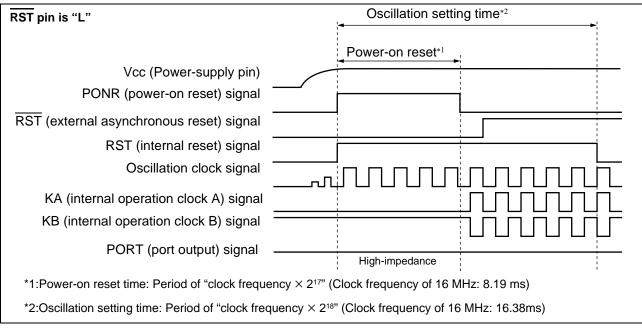
The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at


50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)


During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		•
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	1111111
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W	1	01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1B
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001B
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0B
4Fн		Reserved	•		
50н	Timer Control Status Register 0	TMCSR0	R/W		00000000 _B
51 н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0 0 0 0 _B
52 н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55 H	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58 H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000 _B
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 0 _B
5В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B
5 Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5FH		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65 H		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0 _B
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000
68 H	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 0 _B
69н to 6Ен		Reserved			(Conti

Address	Register	Abbreviation	Access	Peripheral	Initial value
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX
1930н to 19FFн		Re	served		
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1B00н to 1BFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1C00H to $1EFFH$		Re	served		
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB
1FF6н to 1FFFн		Re	served		

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

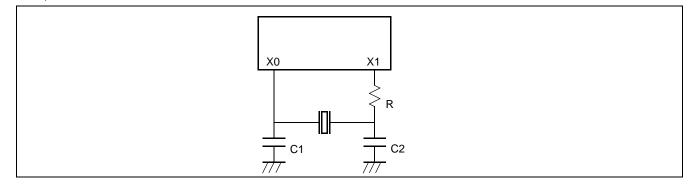
Address	Register	Abbreviation	Access	Initial Value	
001A2Cн				XXXXXXXX XXXXXXXXB	
001A2Dн	ID register 3	IDR3	R/W		
001A2Eн		ibito	10,11	XXXXX XXXXXXXXB	
001A2Fн					
001А30н				XXXXXXXX XXXXXXXXB	
001A31н	ID register 4	IDR4	R/W		
001А32н		IDI(4	10,11	XXXXX XXXXXXXXB	
001А33н					
001А34н				XXXXXXXX XXXXXXXXB	
001A35н	ID register 5	IDR5	R/W		
001A36н		ibito	1011	XXXXX XXXXXXXXB	
001А37н				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001A38н	_			XXXXXXXX XXXXXXXxxxxxxxxxxxxxxxxxxxxxx	
001А39н	ID register 6	IDR6	R/W		
001АЗАн		ibito	1011	XXXXX XXXXXXXXB	
001А3Bн					
001А3Cн				XXXXXXXX XXXXXXXXB	
001А3Dн	ID register 7	IDR7	R/W		
001А3Eн			10,00	XXXXX XXXXXXXXB	
001А3Fн				(Conti	

Address	Register	Abbreviation	Access	Initial Value
001A40н				
001A41н	ID register 8	IDR8	R/W	XXXXXXXX XXXXXXXXB
001A42н		IDRo	17/17	XXXXX XXXXXXXXB
001А43н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
001A44н				XXXXXXXX XXXXXXXXB
001A45н	ID register 9	IDR9	R/W	
001A46н		ibito	10,11	XXXXX XXXXXXXXB
001A47н				
001A48н				XXXXXXXX XXXXXXXB
001A49н	ID register 10	IDR10	R/W	
001А4Ан		IBI(10	10,00	XXXXX XXXXXXXXB
001A4Bн				
001A4Cн	-			XXXXXXXX XXXXXXXB
001A4Dн	ID register 11	IDR11	R/W	
001A4Eн				XXXXX XXXXXXXXB
001A4Fн				
001А50н				XXXXXXXX XXXXXXXxB
001А51н	ID register 12	IDR12	R/W	
001А52н				XXXXX XXXXXXXXB
001А53н				
001А54н	4			XXXXXXXX XXXXXXXX
001А55н	ID register 13	IDR13	R/W	
001А56н	4			XXXXX XXXXXXXXB
001А57н				
001А58н	4			XXXXXXXX XXXXXXXXB
001А59н	ID register 14	IDR14	R/W	
001A5AH	4			XXXXX XXXXXXXXB
001А5Вн				
001A5CH	4			XXXXXXXX XXXXXXXXX
001A5DH	ID register 15	IDR15	R/W	
001А5Eн	4			XXXXX XXXXXXXX _B
001А5Fн				

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value		
001A60н			D 444	~~~~~		
001А61 н	DLC register 0	DLCR0	R/W	XXXXB		
001A62н			DAA			
001A63н	DLC register 1	DLCR1	R/W	ХХХХв		
001A64н			DAA	VVV-		
001A65н	DLC register 2	DLCR2	R/W	ХХХХв		
001A66н	- DLC register 3	DLCR3	R/W	ХХХХв		
001А67 н	DLC register 3	DLCR3	R/VV	XXXAB		
001A68н	DLC register 4		DAM	VVV-		
001A69н	DLC register 4	DLCR4	R/W	ХХХХв		
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв		
001A6Bн	DLC register 5	DLCRS	r./vv			
001A6Cн	DLC register 6	DLCR6	R/W			
001A6DH	DLC register o	DLCRO	r./vv	XXXX _B		
001A6Eн	DLC register 7	DLCR7	R/W	ХХХХв		
001A6Fн		DLCR7	r./vv			
001А70 н	DLC register 8	DLCR8	R/W	XXXX		
001A71 н	DLC register o	DECKO		^		
001А72 н	DLC register 9	DLCR9	R/W	XXXXB		
001А73 н	DLC register 9	DLCK9	FN/ V V			
001A74н	DLC register 10	10 DLCR10		XXXXB		
001A75н		DECKTO	R/W			
001A76н	DLC register 11	DLCR11	R/W	XXXXB		
001А77 н		DECKT	10/00			
001A78н	DLC register 12	DLCR12	R/W	XXXXB		
001A79н		DEORTZ	10,00			
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB		
001A7Bн		DEORIG				
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв		
001A7DH		DLOR 14				
001A7Eн	DLC register 15	DLCR15	R/W	XXXXB		
001A7Fн		DEORIG		/////6		
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB		

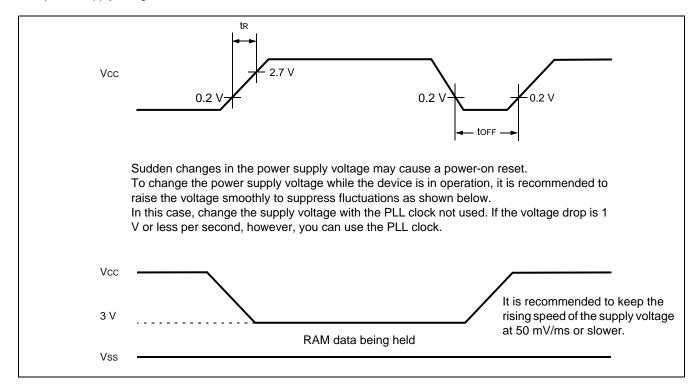
Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXxB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXB
001АВ0н to 001АВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXB
001AE8⊦ to 001AEF⊦	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXB



Notes:

- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of EI²OS, the EI²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the EI²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the EI²OS clear signal caused by the first event. So it is recommended not to use the EI²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

Example of Oscillation circuit

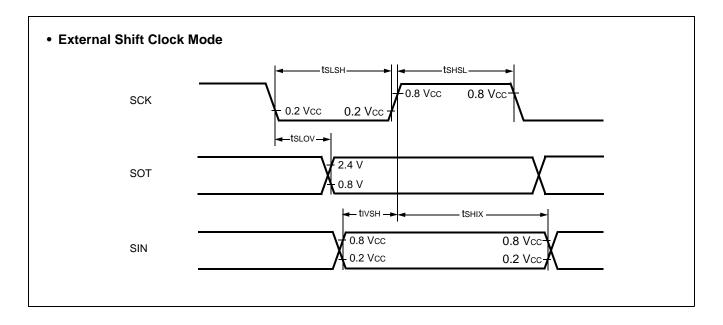

11.4.3 Power On Reset

$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C})$										
Paramotor	Parameter Symbol Pin name		name Condition -		Value		Remarks			
Falameter			Condition	Min	Max	Unit	Remarks			
Power on rise time	tR	Vcc		0.05	30	ms	*			
Power off time	toff	Vcc		50	_	ms	Due to repetitive operation			

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

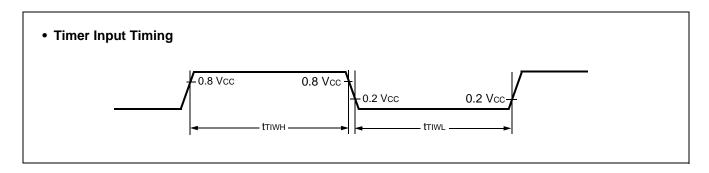
- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.



11.4.4 UART0/1, Serial I/O Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} +85 \text{ }^{\circ}\text{C})$

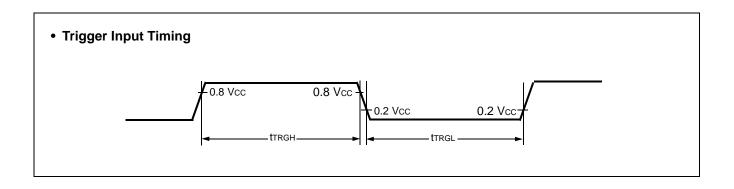
Parameter	Symbol	bol Pin name Condition		Value		Unit	Remarks
raianicici	Symbol	Finnanie	Condition	Min	Мах	Onit	itemaiks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT \ delay \ time$	ts∟ov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100	_	ns	
$SCK \uparrow \Rightarrow Valid \; SIN \; hold \; time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60		ns	



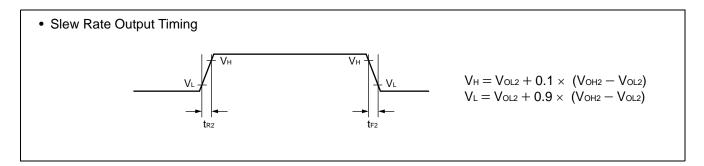
(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Symbol	Fin hame	Condition	Min	Max		
Input pulse width	tтіwн	TIN0, TIN1		4 tcp	_	ns	
mput puise width	t⊤ıw∟	IN0 to IN3					



11.4.5 Trigger Input Timing


 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks	
	Symbol	Fill Hallie	Condition	Min	Мах	Unit		
Input pulse width	tтrgн	INT0 to INT7, ADTG		5 tcp	_	ns	Under normal operation	
	t trgl			1		μs	In stop mode	

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) ($V_{CC} = 5.0 V \pm 10 \%$, $V_{SS} = AV_{SS} = 0.0 V$, $T_A = -40 \degree C$ to $+85 \degree C$)									
Parameter	Symbol	Pin name	Condition	Value Min Typ Max			Unit	Remarks	
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

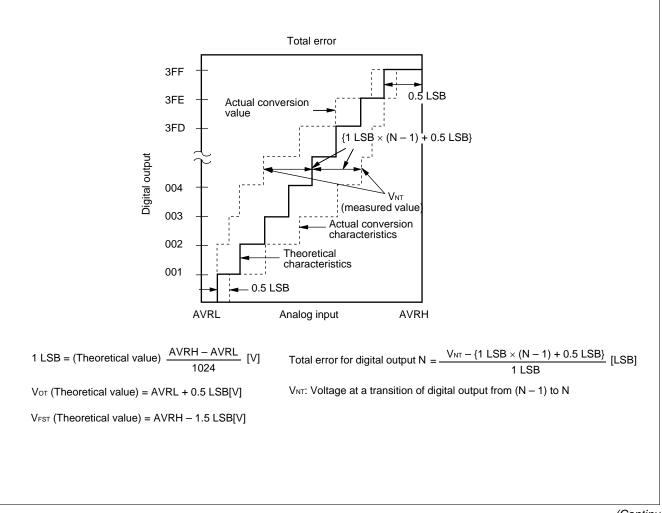
11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

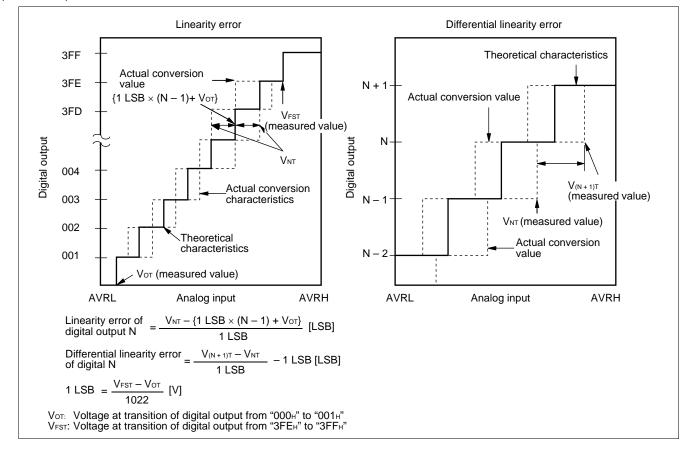
Parameter	Sym-	Pin name		Unit	Remarks		
raiailletei	bol		Min	Тур	Max	Unit	Kennarks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	_	±5.0	LSB	
Nonlinearity error	_	—	_	_	±2.5	LSB	
Differential linearity error	—	—	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	_	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	

Parameter	Sym-	Pin name		Value	Unit	Remarks	
raiailletei	bol		Min	Тур	Max	Unit	Remarks
Poforonoo voltago rongo	—	AVRH	AVRL + 3.0	—	AVcc	V	
Reference voltage range	—	AVRL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	_	5	—	mA	
	Іан	AVcc	_		5	μA	*
Reference voltage current	Ir	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
			_	140	600	μA	MB90598G
	Irh	AVRH	_		5	μA	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

*: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

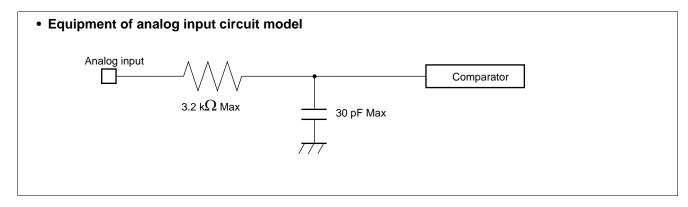

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.



11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

11.8 Flash memory

■ Erase and programming performance

Parameter	Condition	Value			Unit	Remarks		
Falameter	Condition	Min	Тур	Max	Onit	i telliai ka		
Sector erase time		_	1	15	s	MB90F598G	Excludes 00H programming prior erasure	
Chip erase time	$T_A = +25 \ ^{\circ}C,$ $V_{CC} = 5.0 \ V$	_	5	_	s	MB90F598G	Excludes 00H programming prior	
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead	
Erase/Program cycle	—	10000	_	—	cycle			