

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

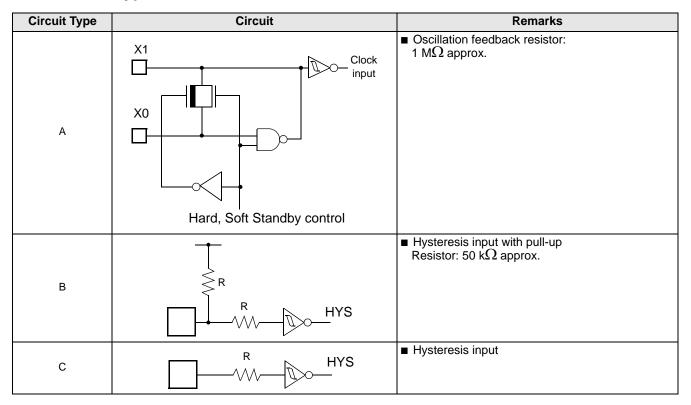
Details

E·XFI

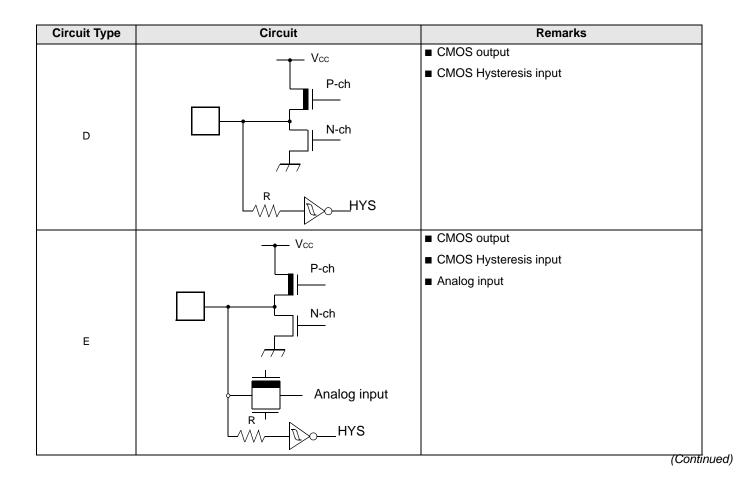
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-gs-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Pin no.	Pin name	Circuit type	Function
20	P50	D	General purpose IO
28	SIN2	D	SIN Input for the Serial IO
29 to 32	P51 to P54	D	General purpose IO
291032	INT4 to INT7	D	External interrupt input for INT4 to INT7
33	P55	D	General purpose IO
	ADTG	ם	Input for the external trigger of the A/D Converter
38 to 41	P60 to P63	E	General purpose IO
30 10 41	AN0 to AN3	L	Inputs for the A/D Converter
43 to 46	P64 to P67	E	General purpose IO
43 10 40	AN4 to AN7	L	Inputs for the A/D Converter
47	P56	D	General purpose IO
47	TIN0	ם	TIN input for the 16-bit Reload Timer 0
48	P57	D	General purpose IO
40	ΤΟΤΟ	D	TOT output for the 16-bit Reload Timer 0
	P70 to P73		General purpose IO
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0
	P74 to P77		General purpose IO
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1
	P80 to P83		General purpose IO
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2
	P84 to P87		General purpose IO
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3
74	P90	5	General purpose IO
74	ТХ	D	TX output for CAN Interface
75	P91	6	General purpose IO
75	RX	D	RX input for CAN Interface



Pin no.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
70	INT0		External interrupt input for INT0
78 to 80	P93 to P95	D	General purpose IO
70 10 00	INT1 to INT3		External interrupt input for INT1 to INT3
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to V_{CC} or $V_{SS}.$
51	MD2	н	Operating mode selection input pin. This pin should be connected to $V_{\mbox{\scriptsize CC}}$ or $V_{\mbox{\scriptsize SS}}.$
27	С	_	External capacitor pin. A capacitor of $0.1 \mu F$ should be connected to this pin and $V_{\text{SS}}.$
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

4. I/O Circuit Type

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

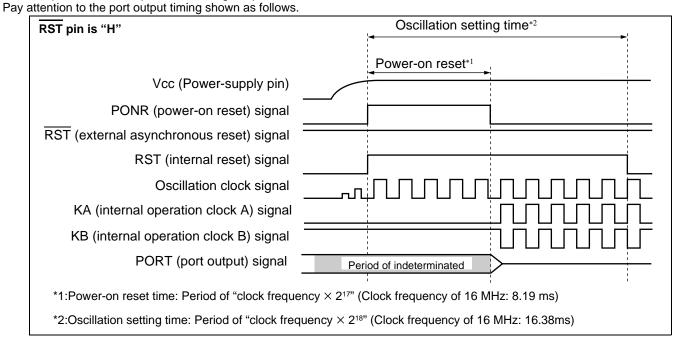
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

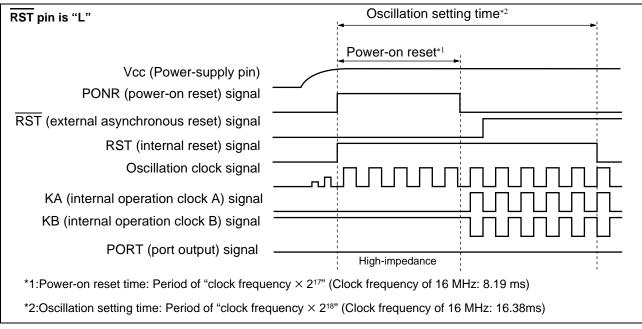
The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at


50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)


During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

(12) Initialization

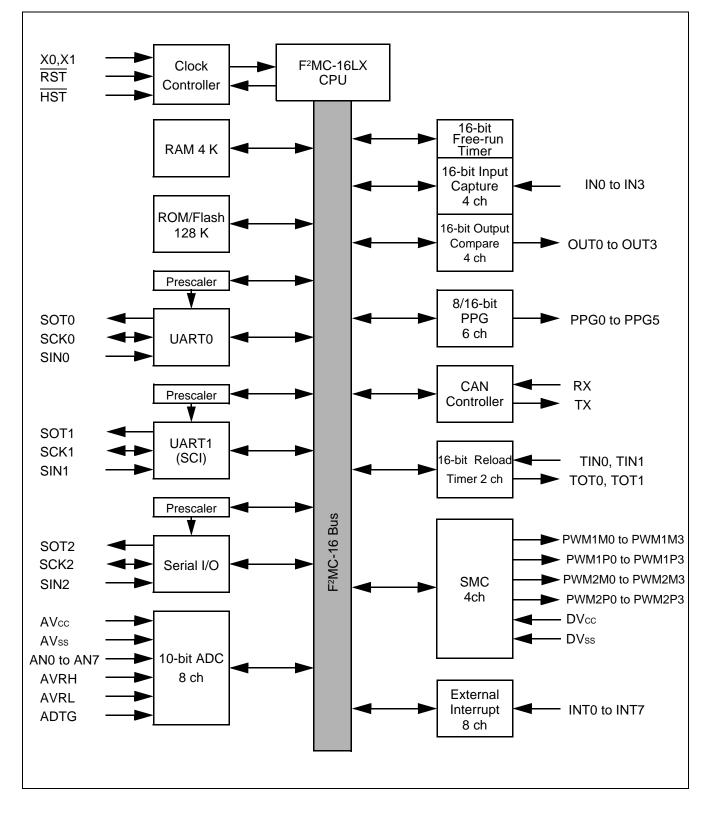
The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS


The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1B
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001B
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0B
4Fн		Reserved	•		
50н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 0 0 0 0 0 _B
51 н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0 0 0 0 _B
52 н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55 H	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58 H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000 _B
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 0 _B
5В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	0 0 0 0 0 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B
5 Е н	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5FH		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65 H		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 0 _B
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000
68 H	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 0 _B
69н to 6Ен		Reserved			(Conti

(Continued)

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value				
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX				
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX				
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX				
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX				
1930н to 19FFн		Re	served						
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller					
1B00н to 1BFFн	CAN	CAN Controller. Refer to section about CAN Controller							
1C00H to $1EFFH$		Re	served						
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX				
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX				
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX				
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX				
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX				
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB				
1FF6н to 1FFFн		Re	served						

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

(Continued)

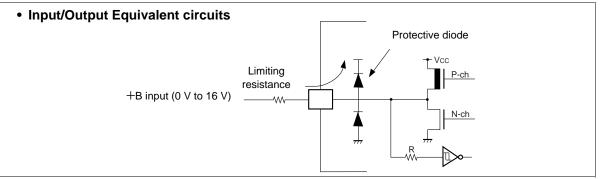
Address	Register	Abbreviation	Access	Initial Value
001B08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX
001B09н		IDEIX	1.7, 4.4	
001В0Ан	- Transmit RTR register	TRTRR	R/W	0000000 000000₀
001В0Вн			1.7, 4.4	000000000000000000000000000000000000000
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX
001B0Dн		NEWIN		
001B0Eн	Transmit interrupt enable register	TIER	R/W	0000000 0000000 _в
001B0Fн		HER	r/ vv	0000000 000000B
001B10н				XXXXXXXX XXXXXXXX
001B11н	Acceptance mask select register	AMSR	R/W	
001В12н		AWSK	r/ vv	XXXXXXXX XXXXXXXX
001B13н				
001B14н				XXXXXXXX XXXXXXXX
001B15⊦		AMR0 R/W		
001B16⊦	 Acceptance mask register 0 			
001B17н				ХХХХХ ХХХХХХХХВ
001B18⊦				
001B19⊦			DAA	XXXXXXXX XXXXXXXXXB
001B1Aн	 Acceptance mask register 1 	AMR1	R/W	
001B1Bн				XXXXX XXXXXXXXB

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
001А00н to 001А1Fн	General-purpose RAM		R/W	XXXXXXXXB to XXXXXXXB
001A20н				XXXXXXXX XXXXXXXB
001A21н	ID register 0	IDR0	R/W	
001A22н		IDRO		XXXXX XXXXXXXXB
001А23н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
001A24н				XXXXXXXX XXXXXXXB
001A25н	ID register 1	IDR1	R/W	
001A26н			IX/ VV	XXXXX XXXXXXXXB
001А27 н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
001A28н				XXXXXXXX XXXXXXXB
001A29н	ID register 2	IDR2	R/W	
001А2Ан		ΙΟΝΖ	FX/ V V	XXXXX XXXXXXXXB
001А2Вн				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(Continued)

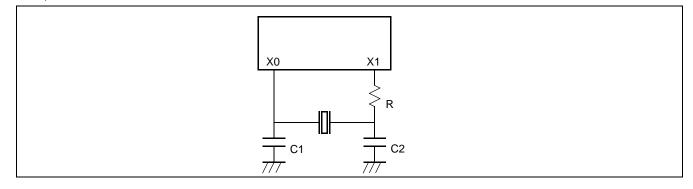
Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXXB
001АВ0н to 001АВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXB
001AE8⊦ to 001AEF⊦	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXB



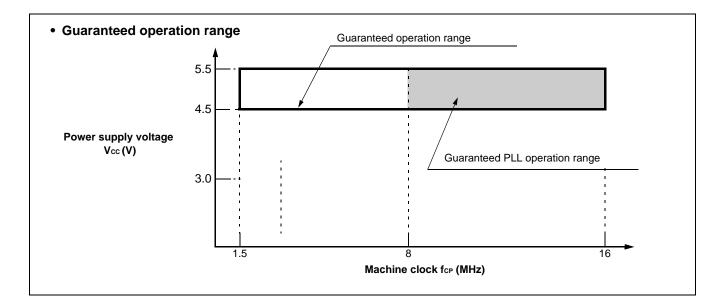
Notes:

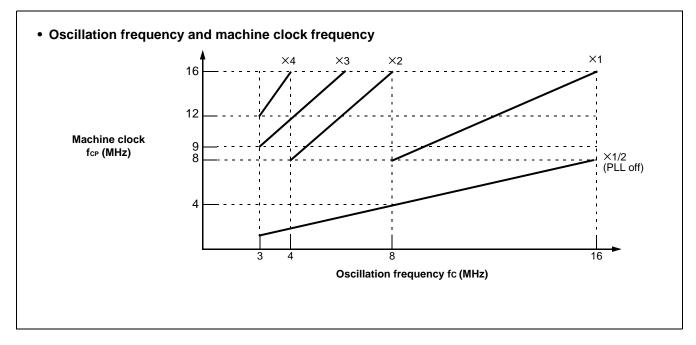
- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of EI²OS, the EI²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the EI²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the EI²OS clear signal caused by the first event. So it is recommended not to use the EI²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

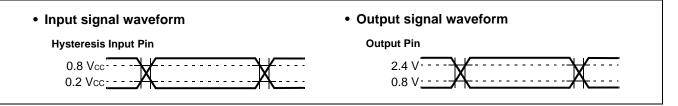


Note: : Average output current = operating current × operating efficiency

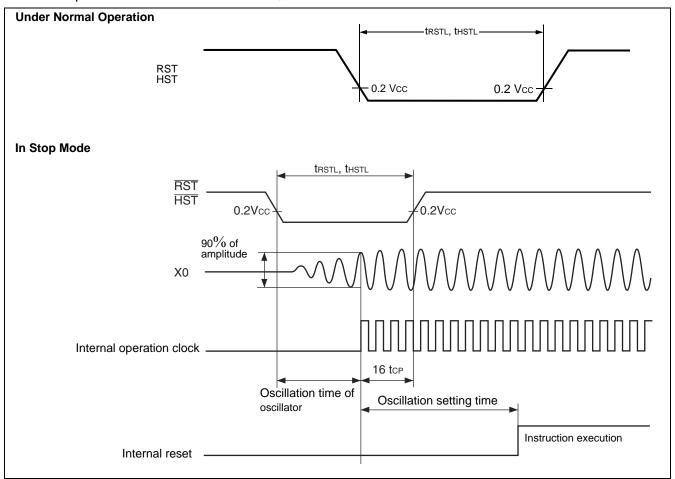

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



Example of Oscillation circuit



AC characteristics are set to the measured reference voltage values below.

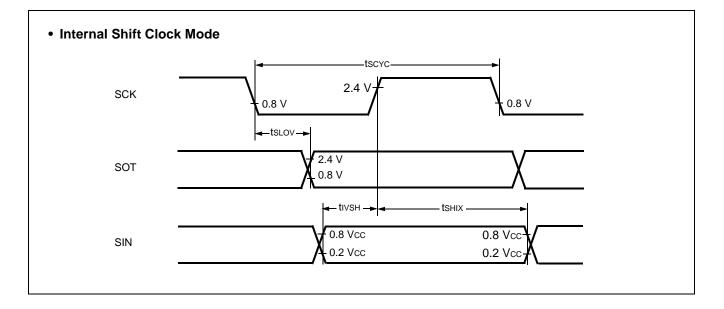

11.4.2 Reset and Hardware Standby Input

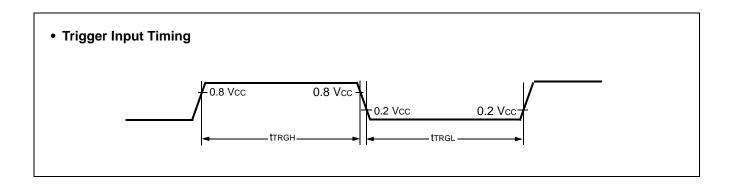
			$(Vcc = 5.0 V \pm$	$(V_{CC} = 5.0 \text{ V}\pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$			
Parameter	Symbol	Pin name	Value	Value		Remarks	
Falametei	Symbol	Finitianie	Min	Max	Unit	Remarks	
	trstl RS	RST	16 tcp*1	—	ns	Under normal operation	
Reset input time			Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode	
		HST	16 tcp*1	—	ns	Under normal operation	
Hardware standby input time	thst∟		Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	—	ms	In stop mode	

*1: "tcp" represents one cycle time of the machine clock.

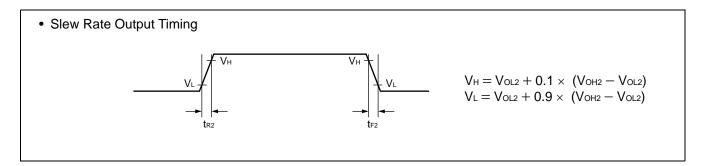
No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.




Parameter	Symbol Pin name Condition		Condition	Value		Unit	Remarks
Farameter			Min	Max	Unit	Remarks	
Serial clock "H" pulse width	ts∺s∟	SCK0 to SCK2		4 tcp	—	ns	
Serial clock "L" pulse width	tslsh	SCK0 to SCK2		4 tcp	—	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are $C_{L} = 80$	_	150	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	pF + 1 TTL.	60	_	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes:

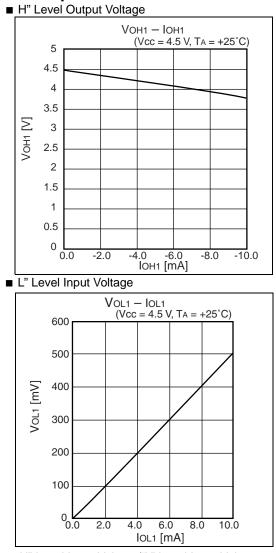

- AC characteristic in CLK synchronized mode.
- CL is load capacity value of pins when testing.
- t_{cp} (external operation clock cycle time) : see Clock timing.

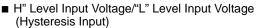
11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) (Vcc = 5.0 V±10 %, Vss = AVss = 0.0 V, T _A = −40 °C to +85 °C)									
Parameter	Symbol	Pin name	Condition	Value Min Typ Max		Unit	Remarks		
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

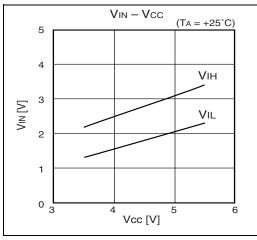
11.5 A/D Converter

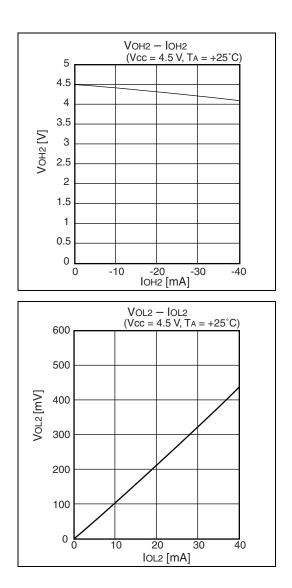
 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name	Value			Unit	Remarks
raiailletei	bol	Fin hame	Min	Min Typ		Unit	Remarks
Resolution	—	—	—		10	bit	
Conversion error	—	—	—	_	±5.0	LSB	
Nonlinearity error	_	—	—	_	±2.5	LSB	
Differential linearity error	—	—	—	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	_	—	_	352tcp	—	ns	
Sampling time	—	—	—	64tcp	—	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μA	
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V	


11.8 Flash memory


■ Erase and programming performance


Parameter	Condition	Value			Unit	Remarks	
Falameter		Min	Тур	Max	Onit	Reinarks	
Sector erase time	$T_A = +25 \ ^{\circ}C,$ $V_{CC} = 5.0 \ V$	_	1	15	s	MB90F598G	Excludes 00H programming prior erasure
Chip erase time		_	5	_	s	MB90F598G	Excludes 00H programming prior
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead
Erase/Program cycle	—	10000	_	—	cycle		



12. Example Characteristics

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers cypress.	cypress.com/arm		
Automotive cypress.com/au	Itomotive		
Clocks & Buffers cypress.co	m/clocks		
Interface cypress.com/	/interface		
Internet of Things cypres	s.com/iot		
Lighting & Power Control cypress.com/pc	owerpsoc		
Memory cypress.com	/memory		
PSoC cypress.c	com/psoc		
Touch Sensing cypress.co	om/touch		
USB Controllers cypress.	.com/usb		
Wireless/RF cypress.com	/wireless		

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.