

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	Mask ROM
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-gs-169

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

	Features	MB90598G	MB90F598G	MB90V595G			
Classifica	ation	Mask ROM product	Flash ROM product	Evaluation product			
ROM size	M size 128 Kbytes		128 Kbytes Boot block Hard-wired reset vector	None			
RAM size	Э	4 Kbytes	4 Kbytes	6 Kbytes			
Emulator	-specific power supply	_		None			
CPU fund	ctions	e clock frequency of 16 MHz) lock frequency of 16 MHz, minim	num value)				
UART0		Clock synchronized transmission (500 K/1 M/2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/slave connection.					
UART1(S	SCI)	Clock synchronized transmission (62.5 K/125 K/250 K/500 K/1 Mbps) Clock asynchronized transmission (1202/2404/4808/9615/31250 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.					
8/10-bit A/D converter		Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel once only) Scan conversion mode (converts two or more successive channels and can program up to 8 channels) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)					
8/16-bit PPG timers (6 channels) Number PPG op A pulse Pulse in 128μs (Number of channels: 6 (8/16-bit × 6 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ (fsys = system clock frequency) 128 μ s (fosc = 4MHz: oscillation clock frequency)					
16-bit Re	load timer	Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fs Supports External Event Count function	ys/2 ⁵ (fsys = System clock frequ	ency)			
16-bit	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare re	egister				
er	Input captures	Number of channels: 4 Rewriting a register value upon a pin input (ris	sing, falling, or both edges)				

Features	MB90598G	MB90F598G	MB90V595G				
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part Automatic re-transmission in case of error Automatic transmission responding to Remote F Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit n Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW	A and B rame nasks					
Stepping motor controller (4 channels)	our high current outputs for each channel synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Jumber of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input.						
Serial IO	Clock synchronized transmission (31.25 K/62.5 H freque LSB first/MSB first	Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first					
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms					
Flash Memory	Supports automatic programming, Embedded Al Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to poir Memory Boot block configuration Erase can be performed on each block Block protection with external programming volta Flash Writer from Minato Electronics, Inc.	gorithm and ant to a fixed boot sector in Flash age	1				
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by						
Process		CMOS					
Power supply voltage for opera- tion*2	+	-5 V±10 %					
Package	QFP-100		PGA-256				

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

2. Pin Assignment

3. Pin Description

Pin no.	Pin name	Circuit type	Function				
82	X0	٨					
83	X1	A					
77	RST	В	Reset input				
52	HST	С	Hardware standby input				
95 to 99	P00 to P03	G	General purpose IO				
05 10 00	IN0 to IN3	G	Inputs for the Input Captures				
90 to 02	P04 to P07	C	General purpose IO				
89 to 92 OUT0 to OUT3		G	Outputs for the Output Compares.				
02 to 08	P10 to P15	P	General purpose IO				
93 10 96	PPG0 to PPG5		Outputs for the Programmable Pulse Generators				
P16		P	General purpose IO				
99 TIN1			TIN input for the 16-bit Reload Timer 1				
P17		P	General purpose IO				
100 TOT1			TOT output for the 16-bit Reload Timer 1				
1 to 8	P20 to P27	G	General purpose IO				
9 to 10	P30 to P31	G	General purpose IO				
12 to 16	P32 to P36	G	General purpose IO				
17	P37	D	General purpose IO				
40	P40	<u> </u>	General purpose IO				
18	SOT0	G	SOT output for UART 0				
10	P41	6	General purpose IO				
19	SCK0	G	SCK input/output for UART 0				
00	P42	6	General purpose IO				
20	SIN0	G	SIN input for UART 0				
04	P43	6	General purpose IO				
21	SIN1	G	SIN input for UART 1				
	P44	6	General purpose IO				
22	SCK1	G	SCK input/output for UART 1				
04	P45	6	General purpose IO				
24	SOT1	G	SOT output for UART 1				
05	P46	6	General purpose IO				
25	SOT2	G	SOT output for the Serial IO				
	P47	â	General purpose IO				
20	SCK2	G	SCK input/output for the Serial IO				

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _{VV} ,T _D HYS	
		CMOS output
		CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
G		
	R	
		■ Hysteresis input Pull down Resister: 50 kΩ approx
	R HYS	(except MB90F598G)
н	$\square \rightarrow_{R} \square$	
	\geq	
	, , ,	
		1

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at

50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

If \overline{RST} pin is "L", the outputs become high-impedance.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram

7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010в
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB
2 F н	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		00000000
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External interrupt	00000000
33н	External Interrupt Level Register	ELVR	R/W		000000000
34н	A/D Control Status Register 0	ADCS0	R/W		00000000
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Convertor	00000000
36н	A/D Data Register 0	ADCR0	R	A/D Conventer	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_000_1в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	000000B
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-hit Programmable	0_000_1в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	00000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_000_1в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001в
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43 _H		Reserved		1	1
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_000_1в
45 _H	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001в
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	00000в
47 H		Reserved		1	1
48 _H	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable	0_000_1в
49 H	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse	0_00001в
4 Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	000000в
4B⊦		Reserved	<u> </u>	1	

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1в
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	$0_0 0 0 0 0 0 1_B$
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	$0\ 0\ 0\ 0\ 0\ 0\ _\ _^{B}$
4F _H		Reserved			
50н	Timer Control Status Register 0	TMCSR0	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000B
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54н	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0000 _B
56 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXX _B
57н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	$___ 0 0 0 0 0_B$
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; _\; 0\; 0_{\rm B}$
5Bн	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	0 0 0 0 0 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5 F н		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _\ 0_{\rm B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65н		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		00000000
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
68н	Timer Control Status Register	TCCS	R/W		000000000
69н to 6Ен		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
6Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXX _B
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXX _B
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
74н	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXX _B
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXX _B
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7 8н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX _B
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX _B
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7 Вн	PWM2 Select Register 2	PWS22	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7Fн	PWM2 Select Register 3	PWS23	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
80н to 8Fн	CAN Controlle	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_{ m B}$
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0в
А0н	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0 _B
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	11111100 _B
A2H to A7H		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	$1_{-}00100_{B}$
AAH to ADH		Reserved			
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 0 _B
AFH		Reserved			

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value
192Сн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXXAB
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX
192Е н	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/5	XXXXXXXX
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXXAB
1930н to 19FFн	Reserved				
1A00н to 1AFFн	CAN Controller. Refer to section about CAN Controller				
1B00н to 1BFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1C00н to 1EFFн		Re	served		
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXXAB
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXXAB
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXXAB
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXAB
1FF6н to 1FFFн		Re	served		

Description for Read/Write

R/W : Readable/writable

R : Read only

W : Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- □ 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BV/AL P	P/M		
000081 н	Nessage burrer valid register	DVALK	11/11	0000000 0000008	
000082н	Transmit request register	TREOR	R/M	0000000 0000000₀	
000083н		mean	10,00		
000084н	Transmit cancel register	TCANP	۱۸/		
000085н		TOANK	vv	000000000000000000000000000000000000000	
000086н	Transmit complete register	TCR	R/W	0000000 0000000₀	
000087н		TOK	1.7.4.4	000000000000000000000000000000000000000	
000088н	Receive complete register	PCP			
000089н		Non	10/00		
00008Ан	Remote request receiving register	DDTDD			
00008Bн	- Remote request receiving register		10/00		
00008Cн	Receive overrup register				
00008Dн	Receive overrun register	KOVKK	11/11		
00008EH	Receive interrupt enable register	RIER	R/M	0000000 0000000	
00008Fн	Receive interrupt enable register	NER	11/11	0000000 0000008	
001В00н	Control status register	CSP			
001B01 н		COR	N/W, N	00000 00-1B	
001В02н	Last event indicator register				
001B03н		LLIN	FX/ V V	000-000B	
001B04 _H	Pocoivo/tropsmit error couptor	PTEC	P		
001B05н		KIEG	K		
001B06н	Bit timing register	BTP	P/M	-1111111 1111111	
001В07 н			FX/ V V	-111111 11111111B	

9.1 List of Control Registers

11.2 Recommended Conditions

(Vss = AVss = 0.0 V)

Paramotor	Symbol	Value		Unit	Bomorko	
Farameter	Symbol	Min	Тур	Max	Onit	Remarks
Power supply veltage	Vcc	4.5	5.0	5.5	V	Under normal operation
Power supply voltage	AVcc	3.0	-	5.5	V	Maintains RAM data in stop mode
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*
Operating temperature	TA	-40	—	+85	°C	

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

		-	(Vcc =	5.0 V±10%	6, Vss = /	AVss = 0.0) V, TA	= -40 °C to +8
Parameter		Pin name	Condition		Value			Domorko
Falameter	Symbol	Fin name	Condition	Min	Тур	Max	Unit	Rellidiks
Input H voltage	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V	
	Vihm	MD input pin	—	Vcc - 0.3	_	Vcc +0.3	V	
Input L voltage	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
	VILM	MD input pin	—	Vss - 0.3	_	Vss +0.3	V	
Output H voltage	Vон1	Output pins except P70 to P87	Vcc = 4.5 V, Іон1 = -4.0 mA	Vcc - 0.5	_	_	V	
	V _{OH2}	P70 to P87	Vcc = 4.5 V, Іон ₂ = -30.0 mA	Vcc - 0.5	_	_	V	
Output L voltage	Vol1	Output pins except P70 to P87	Vcc = 4.5 V, IoL1 = 4.0 mA	_		0.4	V	
	Vol2	P70 to P87	$V_{CC} = 4.5 V,$ IOL2 = 30.0 mA	_	_	0.5	V	

(Continued)

$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} + 10\% ^{\circ}\text{C} ^{\circ}\text{C} \text{ to} + 10\% ^{\circ}\text{C} $									
Parameter	Symbol	Pin name	Condition		Value	Unit	Bomorko		
				Min	Тур	Max	Unit	Rellidiks	
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	—	_	5	15	pF		
		P70 to P87	_	_	15	30	pF		
Pull-up resistance	Rup	RST	_	25	50	100	kΩ		
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ		

*: The power supply current testing conditions are when using the external clock.

11.4 AC Characteristics

11.4.1 Clock Timing

			(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T _A = -40 $^{\circ}$ C to +					
Deremeter	Symbol	Pin name	Value			l Init	Demerke	
Parameter	Symbol		Min	Тур	Max	Unit	Reliidiks	
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit	
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit	
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock	
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock	
Frequency deviation with PLL *	Δf	—	—	—	5	%		
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.	
Input clock rise and fall time	tcr, tcf	X0	_	—	5	ns	When using external clock	
Machine clock frequency	fср	—	1.5	—	16	MHz		
Machine clock cycle time	t _{CP}	—	62.5	—	666	ns		
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU	

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

Baramotor	Symbol	Pin namo	Condition	Value		Unit	Bomorko
Faialletei	Symbol	Fininanie	Condition	Min	Max	Onit	Nemarks
Serial clock "H" pulse width	ts∺s∟	SCK0 to SCK2		4 tcp	—	ns	
Serial clock "L" pulse width	tslsh	SCK0 to SCK2		4 tcp	—	ns	
$SCK\downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are $C_{L} = 80$		150	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2	pF + 1 TTL.	60	_	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes:

- AC characteristic in CLK synchronized mode.
- CL is load capacity value of pins when testing.
- t_{cp} (external operation clock cycle time) : see Clock timing.

(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramotor	Symbol	Pin name	Condition	Va	ue	Unit	Remarks
Falameter	Symbol		Condition	Min	Max	Unit	
Input pulse width	tтіwн	TIN0, TIN1		4 top		ns	
	t⊤ıw∟	IN0 to IN3	—	4 (CP	_		

11.4.5 Trigger Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramotor	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol			Min	Max	Unit		
Input pulse width	tтrgh INT ttrgl	INT0 to INT7, ADTG	_	5 tcp	_	ns	Under normal operation	
				1	_	μs	In stop mode	

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.

Supply Current

