



Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                |
|----------------------------|--------------------------------------------------------------------------------|
|                            |                                                                                |
| Product Status             | Obsolete                                                                       |
| Core Processor             | F <sup>2</sup> MC-16LX                                                         |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 16MHz                                                                          |
| Connectivity               | CANbus, EBI/EMI, SCI, Serial I/O, UART/USART                                   |
| Peripherals                | POR, PWM, WDT                                                                  |
| Number of I/O              | 78                                                                             |
| Program Memory Size        | 128KB (128K x 8)                                                               |
| Program Memory Type        | Mask ROM                                                                       |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 4K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                      |
| Data Converters            | A/D 8x8/10b                                                                    |
| Oscillator Type            | External                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 100-BQFP                                                                       |
| Supplier Device Package    | 100-QFP (14x20)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb90598gpf-gs-199e1 |





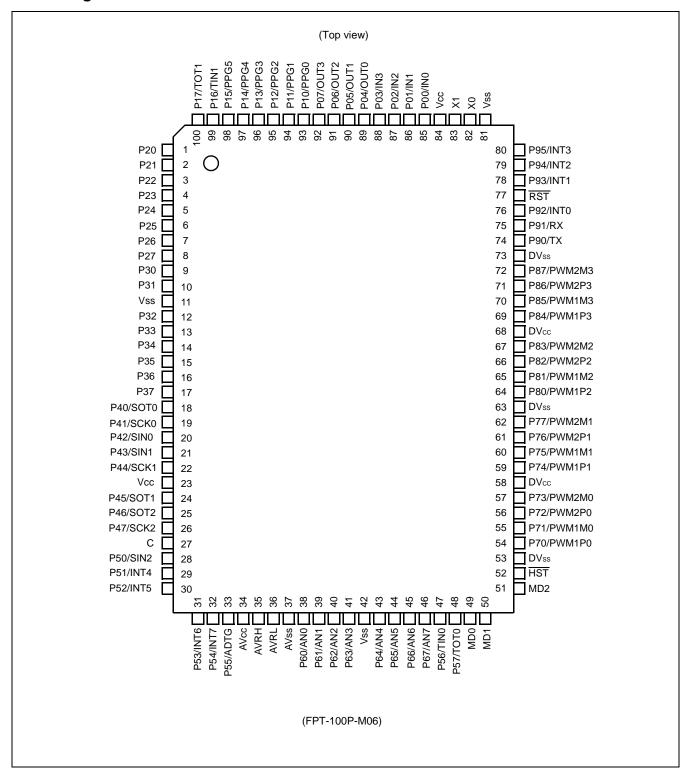
# Contents

| Pin Assignment                                    | 6 |
|---------------------------------------------------|---|
| Pin Description                                   |   |
| 1 III Description                                 | _ |
| I/O Circuit Type                                  | ಶ |
| Handling Devices1                                 | 1 |
| Block Diagram1                                    | 4 |
| Memory Space1                                     |   |
| I/O Map10                                         | 6 |
| Can Controller2                                   |   |
| List of Control Registers2                        | 3 |
| List of Message Buffers (ID Registers)2           |   |
| List of Message Buffers (DLC Registers and        |   |
| Data Registers) 2                                 | 7 |
| Interrupt Source, Interrupt Vector, and Interrupt |   |
| Control Register2                                 | 9 |

| Electrical Characteristics   | 31 |
|------------------------------|----|
| Absolute Maximum Ratings     | 31 |
| Recommended Conditions       | 33 |
| DC Characteristics           | 33 |
| AC Characteristics           | 35 |
| A/D Converter                | 42 |
| A/D Converter Glossary       | 44 |
| Notes on Using A/D Converter | 45 |
| Flash memory                 | 46 |
| Example Characteristics      | 47 |
| Ordering Information         | 49 |
| Package Dimensions           | 49 |
| Major Changes                |    |
|                              |    |



| Features                               | MB90598G                                                                                                                                                                                                                                                                                                                                                                                                                                | MB90F598G                                                                                                                   | MB90V595G |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| CAN Interface                          | Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW |                                                                                                                             |           |  |  |  |
| Stepping motor controller (4 channels) | Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |           |  |  |  |
| External interrupt circuit             | Number of inputs: 8<br>Started by a rising edge, a falling edge, an "H" le                                                                                                                                                                                                                                                                                                                                                              | evel input, or an "L" level input.                                                                                          |           |  |  |  |
| Serial IO                              |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first |           |  |  |  |
| Watchdog timer                         | Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)                                                                                                                                                                                                                                                                                                                                               | 7.23 ms, 458.75 ms                                                                                                          |           |  |  |  |
| Flash Memory                           | Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics, Inc.                                   |                                                                                                                             |           |  |  |  |
| Low-power consumption (stand-by) mode  | Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |           |  |  |  |
| Process                                | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |           |  |  |  |
| Power supply voltage for operation*2   | +5 V±10 %                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |           |  |  |  |
| Package                                | QFP-100                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             | PGA-256   |  |  |  |


<sup>\*1:</sup> It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

<sup>\*2:</sup> Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")



# 2. Pin Assignment





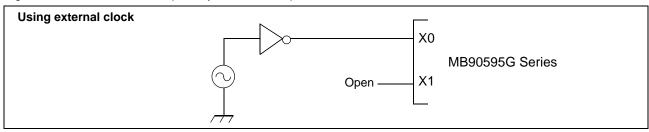
# 5. Handling Devices

### (1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

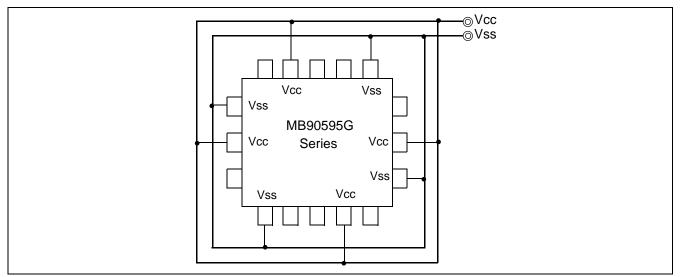

#### (2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least  $2 \text{ k}\Omega$  resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

#### (3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.




#### (4) Power supply pins (Vcc/Vss)

In products with multiple  $V_{\infty}$  or  $V_{ss}$  pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect  $V_{\text{cc}}$  and  $V_{\text{ss}}$  pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pins near the device.



Document Number: 002-07700 Rev. \*A



### (5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

#### (6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

## (7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

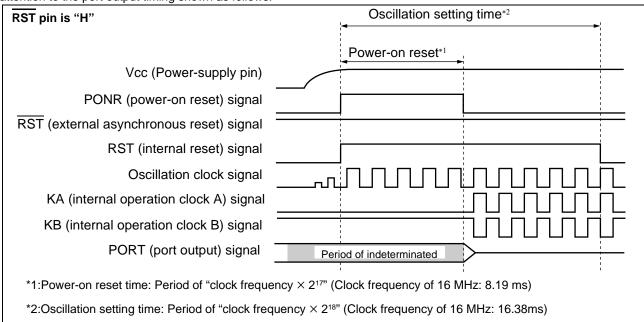
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

### (8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

#### (9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.


#### (10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at  $50 \mu s$  or more (0.2 V to 2.7 V).

## (11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

- If RST pin is "H", the outputs become indeterminate.
- If RST pin is "L", the outputs become high-impedance. Pay attention to the port output timing shown as follows.





| Address    | Register                                  | Abbreviation | Access       | Peripheral               | Initial value               |  |
|------------|-------------------------------------------|--------------|--------------|--------------------------|-----------------------------|--|
| 29н to 2Ан |                                           | Reserved     |              |                          |                             |  |
| 2Вн        | Serial IO Prescaler                       | SCDCR        | R/W          |                          | 01111в                      |  |
| 2Сн        | Serial Mode Control Register (low-order)  | SMCS         | R/W          |                          | 0000в                       |  |
| 2Dн        | Serial Mode Control Register (high-order) | SMCS         | R/W          | Serial IO                | 0 0 0 0 0 0 1 Ов            |  |
| 2Ен        | Serial Data Register                      | SDR          | R/W          |                          | XXXXXXXX                    |  |
| 2Fн        | Edge Selector                             | SES          | R/W          |                          | Ов                          |  |
| 30н        | External Interrupt Enable Register        | ENIR         | R/W          |                          | 0 0 0 0 0 0 0 0в            |  |
| 31н        | External Interrupt Request Register       | EIRR         | R/W          | Fortament laste was unit | XXXXXXXXB                   |  |
| 32н        | External Interrupt Level Register         | ELVR         | R/W          | External Interrupt       | 0 0 0 0 0 0 0 0 В           |  |
| 33н        | External Interrupt Level Register         | ELVR         | R/W          |                          | 0 0 0 0 0 0 0 0 В           |  |
| 34н        | A/D Control Status Register 0             | ADCS0        | R/W          |                          | 0 0 0 0 0 0 0 0 В           |  |
| 35н        | A/D Control Status Register 1             | ADCS1        | R/W          | A/D Converter            | 0 0 0 0 0 0 0 0 В           |  |
| 36н        | A/D Data Register 0                       | ADCR0        | R            | A/D Conventer            | XXXXXXXXB                   |  |
| 37н        | A/D Data Register 1                       | ADCR1        | R/W          |                          | 0 0 0 0 1 _ XX <sub>B</sub> |  |
| 38н        | PPG0 Operation Mode Control Register      | PPGC0        | R/W          | 16-bit Programmable      | 0_0001в                     |  |
| 39н        | PPG1 Operation Mode Control Register      | PPGC1        | R/W          | Pulse                    | 0_00001в                    |  |
| ЗАн        | PPG0, 1 Output Pin Control Register       | PPG01        | R/W          | Generator 0/1            | 0 0 0 0 0 0B                |  |
| 3Вн        |                                           | Reserved     | İ            |                          |                             |  |
| 3Сн        | PPG2 Operation Mode Control Register      | PPGC2        | R/W          | 16-bit Programmable      | 0_0001в                     |  |
| 3Dн        | PPG3 Operation Mode Control Register      | PPGC3        | R/W          | Pulse                    | 0_00001в                    |  |
| 3Ен        | PPG2, 3 Output Pin Control Register       | PPG23        | R/W          | Generator 2/3            | 000000в                     |  |
| 3Fн        |                                           | Reserved     |              |                          |                             |  |
| 40н        | PPG4 Operation Mode Control Register      | PPGC4        | R/W          | 16-bit Programmable      | 0_0001в                     |  |
| 41н        | PPG5 Operation Mode Control Register      | PPGC5        | R/W          | Pulse                    | 0_00001в                    |  |
| 42н        | PPG4, 5 Output Pin Control Register       | PPG45        | R/W          | Generator 4/5            | 000000в                     |  |
| 43н        |                                           | Reserved     |              | -                        |                             |  |
| 44н        | PPG6 Operation Mode Control Register      | PPGC6        | R/W          | 16-bit Programmable      | 0_0001в                     |  |
| 45н        | PPG7 Operation Mode Control Register      | PPGC7        | R/W          | Pulse                    | 0_00001в                    |  |
| 46н        | PPG6, 7 Output Pin Control Register       | PPG67        | R/W          | Generator 6/7            | 000000в                     |  |
| 47н        | Reserved                                  |              |              |                          |                             |  |
| 48н        | PPG8 Operation Mode Control Register      | PPGC8        | R/W          | 16-bit Programmable      | 0_0001в                     |  |
| 49н        | PPG9 Operation Mode Control Register      | PPGC9        | R/W          | Pulse                    | 0_00001в                    |  |
| 4Ан        | PPG8, 9 Output Pin Control Register       | PPG89        | R/W          | Generator 8/9            | 0 0 0 0 0 0B                |  |
| 4Вн        |                                           | Reserved     | <u> </u><br> | l .                      |                             |  |



| Address     | Register                                  | Abbreviation | Access | Peripheral                     | Initial value                |  |
|-------------|-------------------------------------------|--------------|--------|--------------------------------|------------------------------|--|
| 4Сн         | PPGA Operation Mode Control Register      | PPGCA        | R/W    | 16-bit                         | 0_0001в                      |  |
| 4Dн         | PPGB Operation Mode Control Register      | PPGCB        | R/W    | Programmable Pulse             | 0_00001в                     |  |
| 4Ен         | PPGA, B Output Pin Control Register       | PPGAB        | R/W    | Generator A/B                  | 0 0 0 0 0 0B                 |  |
| 4Fн         |                                           | Reserved     | l .    | l                              |                              |  |
| 50н         | Timer Control Status Register 0           | TMCSR0       | R/W    |                                | 0 0 0 0 0 0 0 0в             |  |
| 51н         | Timer Control Status Register 0           | TMCSR0       | R/W    | 16-bit                         | 0000в                        |  |
| 52н         | Timer 0/Reload Register 0                 | TMR0/TMRLR0  | R/W    | Reload Timer 0                 | XXXXXXXXB                    |  |
| 53н         | Timer 0/Reload Register 0                 | TMR0/TMRLR0  | R/W    |                                | XXXXXXXX                     |  |
| 54н         | Timer Control Status Register 1           | TMCSR1       | R/W    |                                | 0 0 0 0 0 0 0 0 <sub>B</sub> |  |
| 55н         | Timer Control Status Register 1           | TMCSR1       | R/W    | 16-bit                         | 0000 <sub>B</sub>            |  |
| 56н         | Timer Register 1/Reload Register 1        | TMR1/TMRLR1  | R/W    | Reload Timer 1                 | XXXXXXXXB                    |  |
| 57н         | Timer Register 1/Reload Register 1        | TMR1/TMRLR1  | R/W    |                                | XXXXXXXXB                    |  |
| 58н         | Output Compare Control Status Register 0  | OCS0         | R/W    | Output                         | 0 0 0 0 0 0 <sub>B</sub>     |  |
| 59н         | Output Compare Control Status Register 1  | OCS1         | R/W    | Compare 0/1                    | 00000в                       |  |
| 5Ан         | Output Compare Control Status Register 2  | OCS2         | R/W    | Output                         | 0 0 0 0 0 Ов                 |  |
| 5Вн         | Output Compare Control Status Register 3  | OCS3         | R/W    | Compare 2/3                    | 00000                        |  |
| 5Сн         | Input Capture Control Status Register 0/1 | ICS01        | R/W    | Input Capture 0/1              | 0 0 0 0 0 0 0 0 <sub>B</sub> |  |
| 5Dн         | Input Capture Control Status Register 2/3 | ICS23        | R/W    | Input Capture 2/3              | 0 0 0 0 0 0 0 0 В            |  |
| 5Ен         | PWM Control Register 0                    | PWC0         | R/W    | Stepping Motor<br>Controller 0 | 0 0 0 0 0 0в                 |  |
| <b>5</b> Fн |                                           | Reserved     | •      |                                |                              |  |
| 60н         | PWM Control Register 1                    | PWC1         | R/W    | Stepping Motor<br>Controller 1 | 0 0 0 0 0 0в                 |  |
| 61н         |                                           | Reserved     |        |                                |                              |  |
| 62н         | PWM Control Register 2                    | PWC2         | R/W    | Stepping Motor<br>Controller 2 | 0 0 0 0 0 0в                 |  |
| 63н         |                                           | Reserved     | ı      |                                |                              |  |
| 64н         | PWM Control Register 3                    | PWC3         | R/W    | Stepping Motor<br>Controller 3 | 0 0 0 0 0 0в                 |  |
| 65н         | Reserved                                  |              |        |                                |                              |  |
| 66н         | Timer Data Register (low-order)           | TCDT         | R/W    |                                | 0 0 0 0 0 0 0 0 В            |  |
| 67н         | Timer Data Register (high-order)          | TCDT         | R/W    | 16-bit Free-run Timer          | 0 0 0 0 0 0 0 0 <sub>B</sub> |  |
| 68н         | Timer Control Status Register             | TCCS         | R/W    |                                | 0 0 0 0 0 0 0 0 <sub>B</sub> |  |
| 69н to 6Eн  |                                           | Reserved     |        |                                |                              |  |



| Address     | Register                                                                        | Abbreviation         | Access    | Peripheral                          | Initial value                |
|-------------|---------------------------------------------------------------------------------|----------------------|-----------|-------------------------------------|------------------------------|
| <b>6</b> Fн | ROM Mirror Function Selection Register                                          | ROMM                 | R/W       | ROM Mirror                          | 1в                           |
| 70н         | PWM1 Compare Register 0                                                         | PWC10                | R/W       |                                     | XXXXXXXX                     |
| 71н         | PWM2 Compare Register 0                                                         | PWC20                | R/W       | Stepping Motor                      | XXXXXXXX                     |
| 72н         | PWM1 Select Register 0                                                          | PWS10                | R/W       | Controller 0                        | 0 0 0 0 0 0 <sub>B</sub>     |
| 73н         | PWM2 Select Register 0                                                          | PWS20                | R/W       |                                     | _ 0 0 0 0 0 0 0 <sub>B</sub> |
| 74н         | PWM1 Compare Register 1                                                         | PWC11                | R/W       |                                     | XXXXXXXX                     |
| 75н         | PWM2 Compare Register 1                                                         | PWC21                | R/W       | Stepping Motor                      | XXXXXXXX                     |
| 76н         | PWM1 Select Register 1                                                          | PWS11                | R/W       | Controller 1                        | 0 0 0 0 0 0 <sub>B</sub>     |
| 77н         | PWM2 Select Register 1                                                          | PWS21                | R/W       |                                     | _ 0 0 0 0 0 0 0 <sub>B</sub> |
| 78н         | PWM1 Compare Register 2                                                         | PWC12                | R/W       |                                     | XXXXXXXX                     |
| 79н         | PWM2 Compare Register 2                                                         | PWC22                | R/W       | Stepping Motor                      | XXXXXXXX                     |
| 7Ан         | PWM1 Select Register 2                                                          | PWS12                | R/W       | Controller 2                        | 0 0 0 0 0 0 <sub>B</sub>     |
| 7Вн         | PWM2 Select Register 2                                                          | PWS22                | R/W       |                                     | _ 0 0 0 0 0 0 0              |
| 7Сн         | PWM1 Compare Register 3                                                         | PWC13                | R/W       |                                     | XXXXXXXX                     |
| 7Dн         | PWM2 Compare Register 3                                                         | PWC23                | R/W       | Stepping Motor                      | XXXXXXXX                     |
| 7Ен         | PWM1 Select Register 3                                                          | PWS13                | R/W       | Controller 3                        | 000000                       |
| <b>7</b> Fн | PWM2 Select Register 3                                                          | PWS23                | R/W       |                                     | _ 0 0 0 0 0 0 0              |
| 80н to 8Fн  | CAN Controll                                                                    | er. Refer to section | about CAN | Controller                          |                              |
| 90н to 9Dн  |                                                                                 | Reserved             |           |                                     |                              |
| 9Ен         | Program Address Detection Control Status<br>Register                            | PACSR                | R/W       | Address Match<br>Detection Function | 0 0 0 0 0 0 0                |
| 9Fн         | Delayed Interrupt/Request Register                                              | DIRR                 | R/W       | Delayed Interrupt                   | 0i                           |
| А0н         | Low-Power Mode Control Register                                                 | LPMCR                | R/W       | Low Power<br>Controller             | 0 0 0 1 1 0 0 O              |
| А1н         | Clock Selection Register                                                        | CKSCR                | R/W       | Low Power<br>Controller             | 1 1 1 1 1 1 0 Oı             |
| А2н to А7н  |                                                                                 | Reserved             | l .       |                                     |                              |
| А8н         | Watchdog Timer Control Register                                                 | WDTC                 | R/W       | Watchdog Timer                      | XXXXX 1 1 1 <sub>B</sub>     |
| А9н         | Time Base Timer Control Register                                                | TBTC                 | R/W       | Time Base Timer                     | 100100i                      |
| ААн to ADн  |                                                                                 | Reserved             |           |                                     |                              |
| АЕн         | Flash Memory Control Status Register<br>(MB90F598G only.<br>Otherwise reserved) | FMCS                 | R/W       | Flash Memory                        | 0 0 0 X 0 0 0                |
| АFн         |                                                                                 | Reserved             | ı         |                                     |                              |



| Address    | Register                      | Abbreviation | Access | Peripheral                   | Initial value |
|------------|-------------------------------|--------------|--------|------------------------------|---------------|
| ВОн        | Interrupt Control Register 00 | ICR00        | R/W    |                              | 00000111в     |
| В1н        | Interrupt Control Register 01 | ICR01        | R/W    | latera at controller         | 00000111в     |
| В2н        | Interrupt Control Register 02 | ICR02        | R/W    | Interrupt controller         | 00000111в     |
| ВЗн        | Interrupt Control Register 03 | ICR03        | R/W    |                              | 00000111в     |
| В4н        | Interrupt Control Register 04 | ICR04        | R/W    |                              | 00000111в     |
| В5н        | Interrupt Control Register 05 | ICR05        | R/W    |                              | 00000111в     |
| В6н        | Interrupt Control Register 06 | ICR06        | R/W    |                              | 00000111в     |
| В7н        | Interrupt Control Register 07 | ICR07        | R/W    |                              | 00000111в     |
| В8н        | Interrupt Control Register 08 | ICR08        | R/W    |                              | 00000111в     |
| В9н        | Interrupt Control Register 09 | ICR09        | R/W    | latarment and toollar        | 00000111в     |
| ВАн        | Interrupt Control Register 10 | ICR10        | R/W    | Interrupt controller         | 00000111в     |
| ВВн        | Interrupt Control Register 11 | ICR11        | R/W    |                              | 00000111в     |
| ВСн        | Interrupt Control Register 12 | ICR12        | R/W    |                              | 00000111в     |
| ВОн        | Interrupt Control Register 13 | ICR13        | R/W    |                              | 00000111в     |
| ВЕн        | Interrupt Control Register 14 | ICR14        | R/W    |                              | 00000111В     |
| ВГн        | Interrupt Control Register 15 | ICR15        | R/W    |                              | 00000111в     |
| C0н to FFн |                               | Resei        | rved   |                              |               |
| 1900н      | Reload Register L             | PRLL0        | R/W    |                              | XXXXXXXX      |
| 1901н      | Reload Register H             | PRLH0        | R/W    | 16-bit Programmable<br>Pulse | XXXXXXXX      |
| 1902н      | Reload Register L             | PRLL1        | R/W    | Generator 0/1                | XXXXXXXX      |
| 1903н      | Reload Register H             | PRLH1        | R/W    |                              | XXXXXXXX      |
| 1904н      | Reload Register L             | PRLL2        | R/W    |                              | XXXXXXXX      |
| 1905н      | Reload Register H             | PRLH2        | R/W    | 16-bit Programmable<br>Pulse | XXXXXXXX      |
| 1906н      | Reload Register L             | PRLL3        | R/W    | Generator 2/3                | XXXXXXXX      |
| 1907н      | Reload Register H             | PRLH3        | R/W    |                              | XXXXXXXX      |
| 1908н      | Reload Register L             | PRLL4        | R/W    |                              | XXXXXXXX      |
| 1909н      | Reload Register H             | PRLH4        | R/W    | 16-bit Programmable          | XXXXXXXX      |
| 190Ан      | Reload Register L             | PRLL5        | R/W    | Pulse<br>Generator 4/5       | XXXXXXXX      |
| 190Вн      | Reload Register H             | PRLH5        | R/W    |                              | XXXXXXXX      |
| 190Сн      | Reload Register L             | PRLL6        | R/W    |                              | XXXXXXXX      |
| 190Он      | Reload Register H             | PRLH6        | R/W    | 16-bit Programmable          | XXXXXXXX      |
| 190Ен      | Reload Register L             | PRLL7        | R/W    | Pulse<br>Generator 6/7       | XXXXXXXXB     |
| 190Fн      | Reload Register H             | PRLH7        | R/W    |                              | XXXXXXXX      |



| Address        | Register                                | Abbreviation | Access | Peripheral                | Initial value |
|----------------|-----------------------------------------|--------------|--------|---------------------------|---------------|
| 1910н          | Reload Register L                       | PRLL8        | R/W    |                           | XXXXXXX       |
| 1911н          | Reload Register H                       | PRLH8        | R/W    | 16-bit Programmable Pulse | XXXXXXXXB     |
| 1912н          | Reload Register L                       | PRLL9        | R/W    | Generator 8/9             | XXXXXXXXB     |
| 1913н          | Reload Register H                       | PRLH9        | R/W    |                           | XXXXXXXXB     |
| 1914н          | Reload Register L                       | PRLLA        | R/W    | 16-bit Programmable Pulse | XXXXXXXXB     |
| 1915н          | Reload Register H                       | PRLHA        | R/W    | Generator A/B             | XXXXXXXXB     |
| 1916н          | Reload Register L                       | PRLLB        | R/W    | 16-bit Programmable Pulse | XXXXXXXXB     |
| 1917н          | Reload Register H                       | PRLHB        | R/W    | Generator A/B             | XXXXXXXXB     |
| 1918н to 191Fн |                                         | Re           | served |                           |               |
| 1920н          | Input Capture Register 0 (low-order)    | IPCP0        | R      |                           | XXXXXXX       |
| 1921н          | Input Capture Register 0 (high-order)   | IPCP0        | R      |                           | XXXXXXXX      |
| 1922н          | Input Capture Register 1 (low-order)    | IPCP1        | R      | Input Capture 0/1         | XXXXXXX       |
| 1923н          | Input Capture Register 1 (high-order)   | IPCP1        | R      |                           | XXXXXXXXB     |
| 1924н          | Input Capture Register 2<br>(low-order) | IPCP2        | R      |                           | XXXXXXXX      |
| 1925н          | Input Capture Register 2 (high-order)   | IPCP2        | R      | January Continue 2/2      | XXXXXXX       |
| 1926н          | Input Capture Register 3 (low-order)    | IPCP3        | R      | Input Capture 2/3         | XXXXXXXXB     |
| 1927н          | Input Capture Register 3 (high-order)   | IPCP3        | R      |                           | XXXXXXXXB     |
| 1928н          | Output Compare Register 0 (low-order)   | OCCP0        | R/W    |                           | XXXXXXXXB     |
| 1929н          | Output Compare Register 0 (high-order)  | OCCP0        | R/W    | - Output Compare 0/1      | XXXXXXXXB     |
| 192Ан          | Output Compare Register 1 (low-order)   | OCCP1        | R/W    |                           | XXXXXXXXB     |
| 192Вн          | Output Compare Register 1 (high-order)  | OCCP1        | R/W    |                           | XXXXXXXXB     |



| Address        | Register                                            | Abbreviation         | Access       | Peripheral         | Initial value |  |  |  |
|----------------|-----------------------------------------------------|----------------------|--------------|--------------------|---------------|--|--|--|
| 192Сн          | Output Compare Register 2 (low-order)               | OCCP2                | R/W          |                    | XXXXXXXX      |  |  |  |
| 192Dн          | Output Compare Register 2 (high-order)              | OCCP2                | R/W          | Output Compare 2/3 | XXXXXXXX      |  |  |  |
| 192Ен          | Output Compare Register 3 (low-order)               | OCCP3                | R/W          | Output Compare 2/3 | XXXXXXXX      |  |  |  |
| 192Fн          | Output Compare Register 3 (high-order)              | OCCP3                | R/W          |                    | XXXXXXXX      |  |  |  |
| 1930н to 19FFн |                                                     | Reserved             |              |                    |               |  |  |  |
| 1A00н to 1AFFн | CAN                                                 | Controller. Refer to | section abou | ut CAN Controller  |               |  |  |  |
| 1В00н to 1ВFFн | CAN                                                 | Controller. Refer to | section abou | ut CAN Controller  |               |  |  |  |
| 1С00н to 1EFFн |                                                     | Re                   | served       |                    |               |  |  |  |
| 1FF0н          | Program Address Detection Register 0 (low-order)    |                      |              |                    | XXXXXXXX      |  |  |  |
| 1FF1н          | Program Address Detection Register 0 (middle-order) | PADR0                | R/W          |                    | XXXXXXXXB     |  |  |  |
| 1FF2н          | Program Address Detection Register 0 (high-order)   |                      |              | Address Match      | XXXXXXXX      |  |  |  |
| 1FF3н          | Program Address Detection Register 1 (low-order)    |                      |              | Detection Function | XXXXXXXX      |  |  |  |
| 1FF4н          | Program Address Detection Register 1 (middle-order) | PADR1                | R/W          |                    | XXXXXXXXB     |  |  |  |
| 1FF5н          | Program Address Detection Register 1 (high-order)   |                      |              |                    | XXXXXXXXB     |  |  |  |
| 1FF6н to 1FFFн |                                                     | Re                   | served       |                    |               |  |  |  |

■ Description for Read/Write R/W : Readable/writable

R : Read only W : Write only

■ Description of initial value

0 : the initial value of this bit is "0".
1 : the initial value of this bit is "1".

X: the initial value of this bit is undefined.

\_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000<sub>H</sub> to 00FF<sub>H</sub>, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.



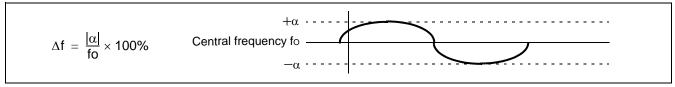
| Address            | Register                  | Abbreviation | Access | Initial Value              |  |
|--------------------|---------------------------|--------------|--------|----------------------------|--|
| 001А60н            | DLC register 0            | DI CDO       | DAM    | VVV-                       |  |
| 001А61н            | - DLC register 0          | DLCR0        | R/W    | ХХХХв                      |  |
| 001А62н            | DLC register 1            | DLCR1        | R/W    | XXXX <sub>B</sub>          |  |
| 001А63н            | - DEC register 1          | DLCKT        | R/VV   | <b>\</b> \\\\              |  |
| 001А64н            | DLC register 2            | DLCR2        | R/W    | ХХХХв                      |  |
| 001А65н            | DEG Tegister 2            | DEGINZ       | 1077   | 70000                      |  |
| 001А66н            | - DLC register 3          | DLCR3        | R/W    | XXXX <sub>B</sub>          |  |
| 001А67н            | DEC register o            | BEONO        | 1077   | 70000                      |  |
| 001А68н            | - DLC register 4          | DLCR4        | R/W    | XXXX <sub>B</sub>          |  |
| 001А69н            | 220 Tog.ioto. 1           | 5251(1       | 1011   | 7000                       |  |
| 001А6Ан            | - DLC register 5          | DLCR5        | R/W    | XXXX <sub>B</sub>          |  |
| 001А6Вн            | 220 reg.etc. 0            | 320.10       |        |                            |  |
| 001А6Сн            | - DLC register 6          | DLCR6        | R/W    | XXXX <sub>B</sub>          |  |
| 001А6Dн            | 220 reg.etc. 0            | 320.10       |        |                            |  |
| 001А6Ен            | - DLC register 7          | DLCR7        | R/W    | XXXX <sub>B</sub>          |  |
| 001А6Fн            |                           |              | .,,,,  |                            |  |
| 001А70н            | DLC register 8            | DLCR8        | R/W    | XXXX                       |  |
| 001А71н            | ŭ                         |              |        |                            |  |
| 001А72н            | DLC register 9            | DLCR9        | R/W    | XXXX <sub>B</sub>          |  |
| 001А73н            |                           |              |        |                            |  |
| 001А74н            | DLC register 10           | DLCR10       | R/W    | XXXX <sub>B</sub>          |  |
| 001А75н            | -                         |              |        |                            |  |
| 001А76н            | DLC register 11           | DLCR11       | R/W    | XXXX <sub>B</sub>          |  |
| 001А77н            |                           |              |        |                            |  |
| 001А78н            | DLC register 12           | DLCR12       | R/W    | XXXX <sub>B</sub>          |  |
| 001А79н            |                           |              |        |                            |  |
| 001А7Ан            | DLC register 13           | DLCR13       | R/W    | XXXX <sub>B</sub>          |  |
| 001A7Вн            |                           |              |        |                            |  |
| 001A7CH            | DLC register 14           | DLCR14       | R/W    | XXXX <sub>B</sub>          |  |
| 001A7DH            |                           |              |        |                            |  |
| 001A7Eн            | DLC register 15           | DLCR15       | R/W    | XXXX <sub>B</sub>          |  |
| 001A7Fн<br>001A80н |                           |              |        |                            |  |
| to                 | Data register 0 (8 bytes) | DTR0         | R/W    | XXXXXXX <sub>B</sub><br>to |  |
| 001А87н            |                           |              |        | XXXXXXXXB                  |  |

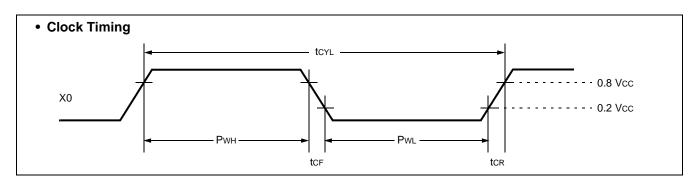


(Vcc = 5.0 V $\pm$ 10%, Vss = AVss = 0.0 V, T<sub>A</sub> = -40 °C to +85 °C)

| Parameter            | Symbol | Pin name                                                                     | Condition | Value |     |     | Unit       | Remarks |
|----------------------|--------|------------------------------------------------------------------------------|-----------|-------|-----|-----|------------|---------|
|                      | Symbol |                                                                              | Condition | Min   | Тур | Max | Oilit      | Remarks |
| Input capacity       | Cin    | Other than C, AVcc, AVss,<br>AVRH, AVRL, Vcc, Vss,<br>DVcc, DVss, P70 to P87 | _         | _     | 5   | 15  | pF         |         |
|                      |        | P70 to P87                                                                   | _         | _     | 15  | 30  | pF         |         |
| Pull-up resistance   | Rup    | RST                                                                          | _         | 25    | 50  | 100 | k $\Omega$ |         |
| Pull-down resistance | RDOWN  | MD2                                                                          |           | 25    | 50  | 100 | kΩ         |         |

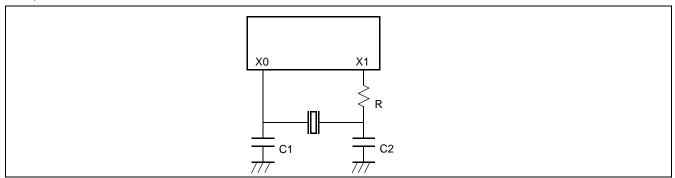
<sup>\*:</sup> The power supply current testing conditions are when using the external clock.


# 11.4 AC Characteristics

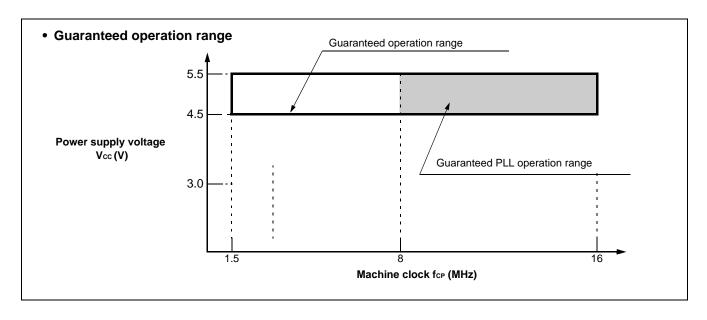

# 11.4.1 Clock Timing

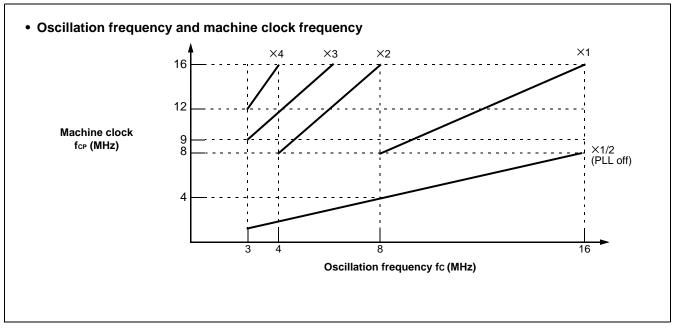
(Vcc = 5.0 V
$$\pm$$
10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)

|                                |             |          |       |       |     | 1     | ,<br>I                         |  |
|--------------------------------|-------------|----------|-------|-------|-----|-------|--------------------------------|--|
| Parameter                      | Symbol      | Pin name | Value |       |     | Unit  | Remarks                        |  |
|                                |             |          | Min   | Тур   | Max | Oilit | ixemarks                       |  |
| Oscillation frequency          | fc          | X0, X1   | 3     | _     | 5   | MHz   | When using oscillation circuit |  |
| Oscillation cycle time         | tcyL        | X0, X1   | 200   | _     | 333 | ns    | When using oscillation circuit |  |
| External clock frequency       | fc          | X0, X1   | 3     | _     | 16  | MHz   | When using external clock      |  |
| External clock cycle time      | tcyL        | X0, X1   | 62.5  | _     | 333 | ns    | When using external clock      |  |
| Frequency deviation with PLL * | Δf          | _        | _     | _     | 5   | %     |                                |  |
| Input clock pulse width        | Pwh, Pwl    | X0       | 10    | _     | _   | ns    | Duty ratio is about 30 to 70%. |  |
| Input clock rise and fall time | tcr, tcr    | X0       | _     | _     | 5   | ns    | When using external clock      |  |
| Machine clock frequency        | fcp         | _        | 1.5   | _     | 16  | MHz   |                                |  |
| Machine clock cycle time       | <b>t</b> CP | _        | 62.5  | _     | 666 | ns    |                                |  |
| Flash Read cycle time          | tcyL        | _        | _     | 2*tcp | _   | ns    | When Flash is accessed via CPU |  |

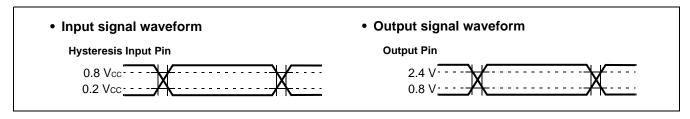

<sup>\*:</sup> Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.






# ■ Example of Oscillation circuit

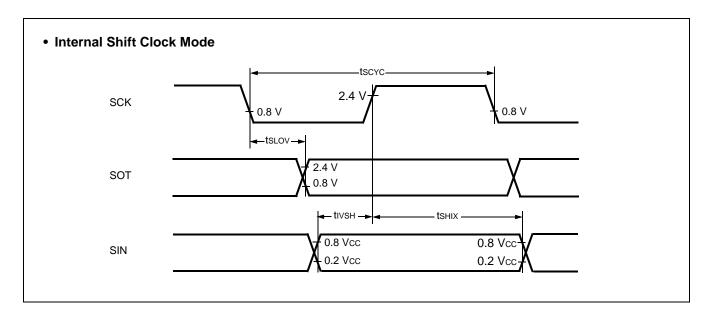









AC characteristics are set to the measured reference voltage values below.



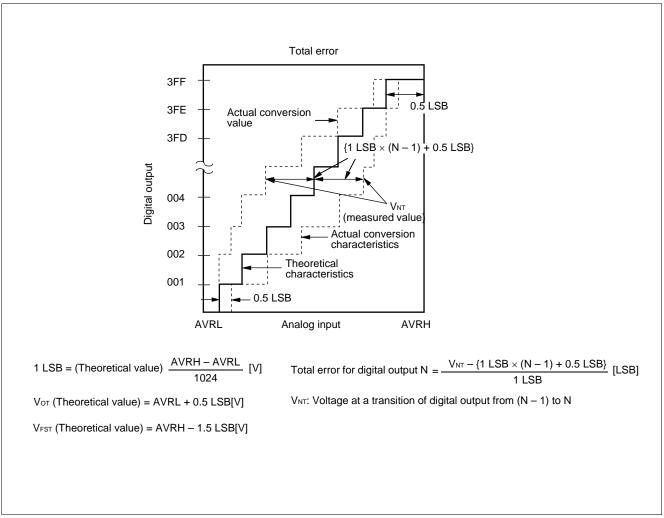



| Parameter                                            | Symbol        | Pin name                      | Condition                                                                | Value |     | Unit | Remarks |
|------------------------------------------------------|---------------|-------------------------------|--------------------------------------------------------------------------|-------|-----|------|---------|
| raiailletei                                          | Symbol        | Fili lialile                  | Condition                                                                | Min   | Max | Oill | Remarks |
| Serial clock "H" pulse width                         | tshsl         | SCK0 to SCK2                  |                                                                          | 4 tcp | _   | ns   |         |
| Serial clock "L" pulse width                         | <b>t</b> slsh | SCK0 to SCK2                  |                                                                          | 4 tcp | _   | ns   |         |
| $SCK \downarrow \; \Rightarrow SOT \; delay \; time$ | <b>t</b> sLOV | SCK0 to SCK2,<br>SOT0 to SOT2 | External clock operation output pins are C <sub>L</sub> = 80 pF + 1 TTL. | _     | 150 | ns   |         |
| Valid SIN ⇒ SCK ↑                                    | tıvsн         | SCK0 to SCK2,<br>SIN0 to SIN2 |                                                                          | 60    | _   | ns   |         |
| SCK ↑ ⇒ Valid SIN hold time                          | tsніх         | SCK0 to SCK2,<br>SIN0 to SIN2 |                                                                          | 60    | _   | ns   |         |

### Notes:

- AC characteristic in CLK synchronized mode.
- C<sub>L</sub> is load capacity value of pins when testing.
- tcp (external operation clock cycle time) : see Clock timing.

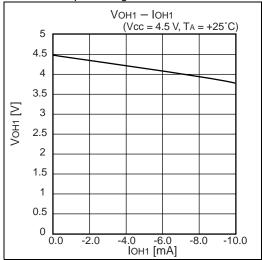




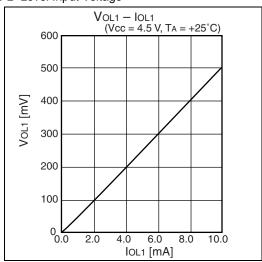

## 11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

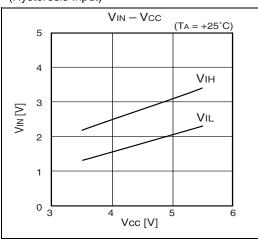
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000"  $\leftrightarrow$  "00 0000 0001") with the full-scale transition point ("11 1111 1110"  $\leftrightarrow$  "11 1111 1111") from actual conversion characteristics

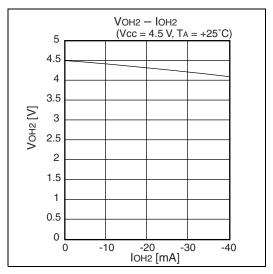

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

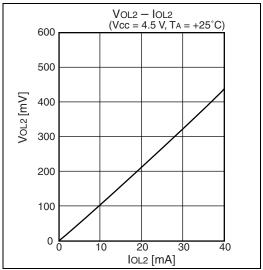





# 12. Example Characteristics

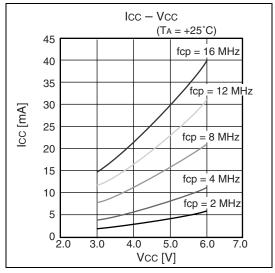

■ H" Level Output Voltage

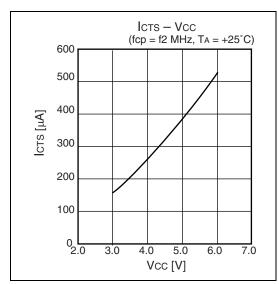




■ L" Level Input Voltage



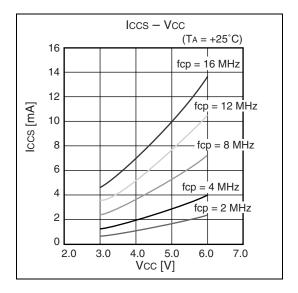
■ H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

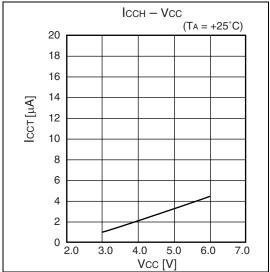










# **Supply Current**













# Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

### **Products**

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb Wireless/RF cypress.com/wireless

## PSoC<sup>®</sup>Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

## **Cypress Developer Community**

Forums | Projects | Video | Blogs | Training | Components

# **Technical Support**

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-07700 Rev. \*A Revised November 30, 2016 Page 51 of 51