

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f598gpf-g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	14
Memory Space	15
I/O Map	16
Can Controller	23
List of Control Registers	23
List of Message Buffers (ID Registers)	24
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

Electrical Characteristics	31
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	45
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	50

Features	MB90598G	MB90F598G	MB90V595G				
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW						
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	Jumber of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input.					
Serial IO	Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first						
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)					
Flash Memory	Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics, Inc.						
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by						
Process		CMOS					
Power supply voltage for opera- tion*2	+	+5 V±10 %					
Package	QFP-100		PGA-256				

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

Circuit Type	Circuit	Remarks
		CMOS high current output
		CMOS Hysteresis input
	P-ch	
	High current	
F	N-ch	
	R	
	L _{VV} ,T _D HYS	
		CMOS output
		CMOS Hysteresis input
	P-ch	■ TTL input
		(MB90F598G, only in Flash mode)
G		
	R	
		■ Hysteresis input Pull down Resister: 50 kΩ approx
	R HYS	(except MB90F598G)
н	$\square \rightarrow_{R} \square$	
	\geq	
	, , ,	
		1

5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010в
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB
2 F н	Edge Selector	SES	R/W		0в
30н	External Interrupt Enable Register	ENIR	R/W		00000000
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External interrupt	00000000
33н	External Interrupt Level Register	ELVR	R/W		000000000
34н	A/D Control Status Register 0	ADCS0	R/W		00000000
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Convertor	00000000
36н	A/D Data Register 0	ADCR0	R	A/D Conventer	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_000_1в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	000000B
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-hit Programmable	0_000_1в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	00000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_000_1в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001в
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43 _H		Reserved		1	1
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_000_1в
45 _H	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001в
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	00000в
47 H		Reserved		1	1
48 _H	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable	0_000_1в
49 H	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse	0_00001в
4 Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	000000в
4B⊦		Reserved	<u> </u>	1	

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1в
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	$0_0 0 0 0 0 0 1_B$
4Eн	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	$0\ 0\ 0\ 0\ 0\ 0\ _\ _^{B}$
4F _H		Reserved			
50н	Timer Control Status Register 0	TMCSR0	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000B
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXX _B
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX _B
54н	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0000 _B
56 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXX _B
57н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXX _B
58H	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; 0\; 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	$___ 0 0 0 0 0_B$
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	$0\; 0\; 0\; 0\; 0\; _\; _\; 0\; 0_{\rm B}$
5Bн	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	0 0 0 0 0 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5 F н		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	$0\ 0\ 0\ 0\ 0\ 0\ _\ 0_{\rm B}$
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	$0\ 0\ 0\ 0\ 0\ 0\ _{}0_{B}$
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65н		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		00000000
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
68н	Timer Control Status Register	TCCS	R/W		000000000
69н to 6Ен		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
6Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXX _B
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXX _B
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000B
73н	PWM2 Select Register 0	PWS20	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
74н	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXX _B
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXX _B
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000B
77н	PWM2 Select Register 1	PWS21	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7 8н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX _B
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX _B
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7 Вн	PWM2 Select Register 2	PWS22	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX _B
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	$_ _ 0 \ 0 \ 0 \ 0 \ 0_B$
7Fн	PWM2 Select Register 3	PWS23	R/W		$_ 0 \ 0 \ 0 \ 0 \ 0 \ 0_B$
80н to 8Fн	CAN Controlle	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_{ m B}$
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0в
А0н	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0 _B
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100 _B
A2H to A7H		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	$1_{-}00100_{B}$
AAH to ADH		Reserved			
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 0 _B
AFH		Reserved			

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- □ 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BV/AL P	P/M		
000081 H			IX/ VV	0000000 0000008	
000082н	Transmit request register	TREOR	R/W	0000000 00000000	
000083н		mean	10,00		
000084н	Transmit cancel register	TCANR	\٨/	0000000 0000000₀	
000085н		TOANK	vv	0000000 00000008	
000086н	Transmit complete register	TCR	P ///		
000087н		TOR	10/00	000000000000000000000000000000000000000	
000088н	Receive complete register	PCP	DAA		
000089н	Receive complete register	KOK	11/11		
00008Ан	Remote request receiving register	RRTRR	P/M		
00008BH	Remote request receiving register		11/11		
00008Cн		RO\/RR	R/M	0000000 0000000	
00008Dн		NOVIN	10/00		
00008EH	Receive interrupt enable register	RIER	R/M	0000000 0000000	
00008Fн	Receive interrupt chable register	MEN	10/00		
001В00н	Control status register	CSP		00000 00-1-	
001B01н		COR	10/00, 10	00000 00-18	
001B02н	Last event indicator register	I EIR	P/M	000-000p	
001В03н	Last event indicator register		10/00	000-00008	
001B04 _H	Receive/transmit error counter	RTEC	P		
001B05н		KILO		0000000 000000B	
001B06н	Bit timing register	BTP	P/M	_1111111 1111111	
001В07 н		DIK	FX/ V V	-1111111 1111111 1 в	

9.1 List of Control Registers

Address	Register	Abbreviation	Access	Initial Value	
001A2Cн				XXXXXXX XXXXXXXxx	
001A2Dн	ID register 3		R/W		
001A2Eн		ibito	10,10	XXXXX XXXXXXXxx	
001A2Fн					
001A30н				XXXXXXXX XXXXXXXx	
001A31н	ID register 4	IDR4	R/W		
001А32н			10,10	XXXXX XXXXXXXxx	
001А33н					
001A34н	-			XXXXXXXX XXXXXXX	
001A35⊦	ID register 5	IDR5	R/W		
001A36⊦				XXXXX XXXXXXXx _B	
001A37н				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001A38н	-			$XXXXXXXX XXXXXXXX_{B}$	
001A39н	ID register 6	IDR6 R/W			
001АЗАн					10,11
001А3Bн				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001АЗСн				XXXXXXXX XXXXXXX	
001А3Dн	ID register 7	IDR7	R/W		
001А3Eн				XXXXX XXXXXXXxs	
001А3Fн					

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

		Interrupt vector		Interrupt control register		
interrupt source	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH			
INT9 instruction	N/A	# 09	FFFFD8H			
Exception	N/A	# 10	FFFFD4H			
CAN RX	N/A	# 11	FFFFD0H	ICB00	0000B0н	
CAN TX/NS	N/A	# 12	FFFFCC _H	ICRUU		
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8H		0000B1	
Time Base Timer	N/A	# 14	FFFFC4H	ICRUI	UUUUB IH	
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	0000B2	
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000628	
16-bit Free-run Timer	N/A	# 17	FFFFB8H		0000B2	
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICRUS	0000B3H	
Serial I/O	*1	# 19	FFFFB0H		0000B4н	
External Interrupt (INT4/INT5)	*1	# 20	FFFFACH	ICR04		
Input Capture 0	*1	# 21	FFFFA8H		0000B5н	
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICK05		
Output Compare 0	*1	# 23	FFFFA0H		0000B6н	
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICK00		
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н		0000 B7 н	
Input Capture 1	*1	# 26	FFFF94 _H			
8/16-bit PPG 4/5	N/A	# 27	FFFF90н		000088	
Output Compare 1	*1	# 28	FFFF8CH		0000000	
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H		000089.	
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000034	
8/16-bit PPG 8/9	N/A	# 31	FFFF80 _H		000084	
Output Compare 2	*1	# 32	FFFF7C _H		OOODAH	
Input Capture 3	*1	# 33	FFFF78⊦		0000BB	
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт		
Output Compare 3	*1	# 35	FFFF70н		0000BCu	
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	000000	
UART 0 RX	*2	# 37	FFFF68 _H			
UART 0 TX	*1	# 38	FFFF64н	101(13		
UART 1 RX	*2	# 39	FFFF60 _H		0000BE	
UART 1 TX	*1	# 40	FFFF5CH			
Flash Memory	N/A	# 41	FFFF58 _H			
Delayed interrupt	N/A	# 42	FFFF54H	ICK IS		

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

Parameter	Symbol Pin namo	Pin namo	Condition	Value			Unit	Pomarke
Falameter	Symbol	Finname	Condition		Тур	Max	Unit	Relliarks
Input leak current	١L		Vcc = 5.5 V, Vss < V1 < Vcc	-5	_	5	μΑ	
			$V_{CC} = 5.0 V \pm 10\%$, Internal frequency:	_	35	60	mA	MB90598G
	Icc		16 MHz, At normal operating	—	40	60	mA	MB90F598G
Power supply current *	lccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep	_	11	18	mA	
	Істѕ	Vcc	V _{cc} = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA	
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	_	_	20	μΑ	
	locus		Vcc = 5.0 V±10%, At Hardware stand-	_	_	20	μA	MB90598G
	Іссн2	by mode, T₄ = 25°C		50	100	μΑ	MB90F598G	

(Continuou)	$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +8 ^{\circ}\text{C} ^{\circ}\text{C} \text{ to } +8 ^{\circ}\text{C} $										
Parameter	Symbol	Din name	Condition		Value	l Init	Demerike				
		Finname	Condition	Min	Тур	Max	Unit	Reindiks			
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF				
		P70 to P87	_	_	15	30	pF				
Pull-up resistance	Rup	RST	_	25	50	100	kΩ				
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ				

*: The power supply current testing conditions are when using the external clock.

11.4 AC Characteristics

11.4.1 Clock Timing

				(Vcc = 5	.0 V±10%	6, Vss =	$AV_{SS} = 0.0 V$, $T_A = -40 \degree C$ to $+$
Deremeter	Symbol	Din nome		Value			Domorko
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock
Frequency deviation with PLL *	Δf	—	—	—	5	%	
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcr, tcf	X0	_	—	5	ns	When using external clock
Machine clock frequency	fср	—	1.5	—	16	MHz	
Machine clock cycle time	t _{CP}	—	62.5	—	666	ns	
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

AC characteristics are set to the measured reference voltage values below.

11.4.2 Reset and Hardware Standby Input

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to}$								
Paramotor	Symbol	Bin namo	Value		Unit	Remarks		
Falametei	Symbol	Finitianie	Min	Max	Unit			
	trst∟	RST	16 tcp*1	—	ns	Under normal operation		
Reset input time			Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	—	ms	In stop mode		
			16 tcp*1	—	ns	Under normal operation		
Hardware standby input time	tнsт∟	HST	Oscillation time of oscillator*2 + 16 tcp*1	_	ms	In stop mode		

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

Baramotor	Symbol	Pin namo	Condition	Value		Unit	Remarks
Faialletei	Cymbol Finname		Condition	Min	Max		
Serial clock "H" pulse width	ts∺s∟	SCK0 to SCK2		4 tcp	—	ns	
Serial clock "L" pulse width	tslsh	SCK0 to SCK2		4 tcp	—	ns	
$SCK\downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are $C_{L} = 80$		150	ns	
Valid SIN \Rightarrow SCK \uparrow	tivsH SCK0 to SCK2, SIN0 to SIN2		pF + 1 TTL.	60	_	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes:

- AC characteristic in CLK synchronized mode.
- CL is load capacity value of pins when testing.
- t_{cp} (external operation clock cycle time) : see Clock timing.

11.4.6 Slew Rate High Co	1.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) ($Vcc = 5.0 V \pm 10 \%$, $Vss = AVss = 0.0 V$, $T_A = -40 \degree C$ to +85 $\degree C$)								
Parameter	Symbol	Pin name	Condition	Value Min Typ Max		Unit	Remarks		
Output Rise/Fall time	tr2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramatar	Sym-	Din nomo	Value				Bomarka
Faidilielei	bol	Fill Hallie	Min	Тур	Max	Unit	Remarks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	—	±5.0	LSB	
Nonlinearity error	—	—	_	—	±2.5	LSB	
Differential linearity error	—	—	_	—	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	Vfst	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	—	—		352tcp	—	ns	
Sampling time	—	—	_	64tcP	—	ns	
Analog port input current	IAIN	AN0 to AN7	-10		10	μA	
Analog input voltage range	VAIN	AN0 to AN7	AVRL	_	AVRH	V	

11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuctitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.