

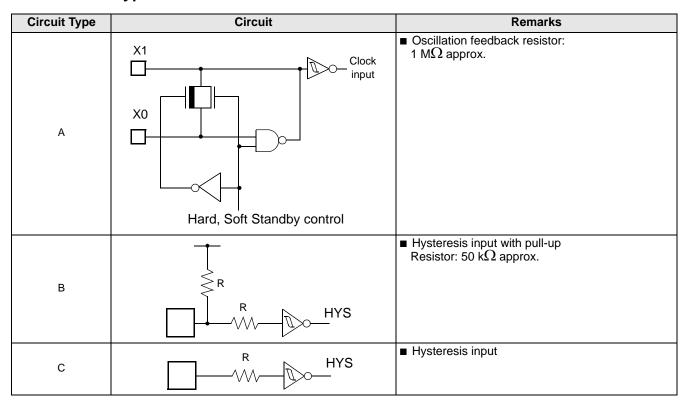
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, SCI, Serial I/O, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f598gpf-gs



Pin no.	Pin name	Circuit type	Function			
00	P50	Г.	General purpose IO			
28	SIN2	D	SIN Input for the Serial IO			
00.100	P51 to P54	1	General purpose IO			
29 to 32	INT4 to INT7	D	External interrupt input for INT4 to INT7			
20	P55	<u> </u>	General purpose IO			
33	ADTG	D	Input for the external trigger of the A/D Converter			
20 to 44	P60 to P63		General purpose IO			
38 to 41	AN0 to AN3	E	Inputs for the A/D Converter			
40 to 40	P64 to P67		General purpose IO			
43 to 46	AN4 to AN7	E	Inputs for the A/D Converter			
47	P56	<u> </u>	General purpose IO			
47	TIN0	D	TIN input for the 16-bit Reload Timer 0			
40	P57	<u> </u>	General purpose IO			
48	TOT0	D	TOT output for the 16-bit Reload Timer 0			
	P70 to P73		General purpose IO			
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0			
	P74 to P77		General purpose IO			
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1			
	P80 to P83		General purpose IO			
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2			
	P84 to P87		General purpose IO			
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3			
74	P90	Ĺ	General purpose IO			
74	TX	D	TX output for CAN Interface			
75	P91	r.	General purpose IO			
75	RX	D	RX input for CAN Interface			

Pin no.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
70	INT0		External interrupt input for INT0
78 to 80	P93 to P95	D	General purpose IO
78 10 80	INT1 to INT3	D	External interrupt input for INT1 to INT3
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter
37	AVss	Power supply	Dedicated ground pin for the A/D Converter
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to Vcc or Vss.
51	MD2	Н	Operating mode selection input pin. This pin should be connected to Vcc or Vss.
27	С	_	External capacitor pin. A capacitor of $0.1\mu\text{F}$ should be connected to this pin and Vss.
23, 84	Vcc	Power supply	Power supply pins (5.0 V).
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
D	Vcc P-ch N-ch HYS	■ CMOS output ■ CMOS Hysteresis input
E	P-ch N-ch Analog input HYS	 ■ CMOS output ■ CMOS Hysteresis input ■ Analog input

Document Number: 002-07700 Rev. *A

Circuit Type	Circuit	Remarks
	V	■ CMOS high current output
	Vcc	■ CMOS Hysteresis input
	P-ch	
	High current	
	riigir current	
F	N-ch	
	R	
	L _{\\\\} HYS	
		■ CMOS output
	Vcc	■ CMOS Hysteresis input
		■ TTL input
	P-ch	(MB90F598G, only in Flash mode)
	<u> </u>	
	N-ch	
G	'	
	///	
	R HYS	
	R TTL	
	V V V	
		■ Hysteresis input Pull-down Resistor: 50 kΩ approx.
	R HYS	(except MB90F598G)
Н		
	 	

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	0 0 0 0 0 0 1 Ов
2Ен	Serial Data Register	SDR	R/W		XXXXXXXX
2Fн	Edge Selector	SES	R/W		Ов
30н	External Interrupt Enable Register	ENIR	R/W		0 0 0 0 0 0 0 0в
31н	External Interrupt Request Register	EIRR	R/W	Fortament laster was unit	XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	0 0 0 0 0 0 0 0 В
33н	External Interrupt Level Register	ELVR	R/W		0 0 0 0 0 0 0 0 В
34н	A/D Control Status Register 0	ADCS0	R/W		0 0 0 0 0 0 0 0 В
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Converter	0 0 0 0 0 0 0 0 В
36н	A/D Data Register 0	ADCR0	R	A/D Conventer	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		0 0 0 0 1 _ XX _B
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable	0_0001в
39н	PPG1 Operation Mode Control Register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W	Generator 0/1	0 0 0 0 0 0B
3Вн		Reserved	İ		
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_0001в
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000в
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_0001в
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001в
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000в
43н		Reserved		-	
44н	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_0001в
45н	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001в
46н	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	000000в
47н		Reserved	<u> </u>	1	
48н	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable	0_0001в
49н	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse	0_00001в
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	0 0 0 0 0 0B
4Вн		Reserved	<u> </u> 	l .	

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_0001в
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001в
4Ен	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0B
4Fн		Reserved	l .	l	
50н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 0 0 0 0в
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000в
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXXB
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXX
54н	Timer Control Status Register 1	TMCSR1	R/W		0 0 0 0 0 0 0 0 _B
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0000 _B
56н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXB
57н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXXB
58н	Output Compare Control Status Register 0	OCS0	R/W	Output	0 0 0 0 0 0 _B
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000в
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	0 0 0 0 0 Ов
5Вн	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0 _B
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 В
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 Ов
5 Fн		Reserved	•		
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	0 0 0 0 0 0в
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	0 0 0 0 0 0в
63н		Reserved	ı		
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0в
65н		Reserved		<u>'</u>	
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 В
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	0 0 0 0 0 0 0 0 _B
68н	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 _B
69н to 6Eн		Reserved			

Address	Register	Abbreviation	Access	Initial Value	
001В08н	- IDE register	IDER	R/W	XXXXXXX XXXXXXXX	
001В09н	TDE register	IDEN	TX/VV	XXXXXXXX XXXXXXXX	
001В0Ан	Transmit RTR register	TRTRR	R/W	0000000 00000000	
001В0Вн	Transmit ix rix register	TIVITAL	TX/VV	0000000 0000000в	
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXX XXXXXXX	
001В0Dн	Tremote frame receive waiting register	IXI VVIIX	TX/VV	XXXXXXXX XXXXXXXX	
001В0Ен	Transmit interrupt enable register	TIER	R/W	00000000 00000000В	
001В0Гн	Transmit interrupt enable register	HEK	IX/VV	00000000 0000000B	
001В10н		AMSR		XXXXXXX XXXXXXX	
001В11н	Acceptance mask select register		R/W	**************************************	
001В12н	Acceptance mask select register		IX/VV	XXXXXXX XXXXXXXX	
001В13н				**************************************	
001В14н				XXXXXXX XXXXXXX	
001В15н	Acceptance mask register 0	AMR0	R/W	**************************************	
001В16н	Acceptance mask register 0	AIVIRU	K/VV	XXXXX XXXXXXXXB	
001В17н				**************************************	
001В18н				XXXXXXX XXXXXXX	
001В19н	Acceptance mask register 1	AMR1	R/W	AAAAAAA AAAAAAAA	
001В1Ан	Acceptance mask register 1	AIVIK I	IK/VV	VVVVV VVVVVVV	
001В1Вн				XXXXX XXXXXXXXB	

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
001A00н to 001A1Fн	General-purpose RAM		R/W	XXXXXXXB to XXXXXXXXB
001А20н				XXXXXXX XXXXXXXB
001А21н	ID register 0	IDR0	R/W	^^^^^^
001А22н	Tib Tegister 0	IDKU	IX/VV	XXXXX XXXXXXXXB
001А23н				VVVV VVVVVVV
001А24н				XXXXXXX XXXXXXXB
001А25н	ID register 1	IDR1	R/W	**************************************
001А26н	To register 1	IDKT	IX/VV	XXXXX XXXXXXXX _B
001А27н				XXXX XXXXXXXB
001А28н				XXXXXXX XXXXXXXB
001А29н	ID register 2	IDR2	R/W	AAAAAAAAAAAAAAA
001А2Ан	To register 2	IDNZ	17/ //	XXXXX XXXXXXXX _B
001А2Вн				VVVVV VVVVVVV

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Cumbal	Rat	Rating		Domonico		
Parameter	Symbol	Min	Max	Unit	Remarks		
	Vcc	Vss - 0.3	Vss + 6.0	V			
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc	*1	
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1	
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc		
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V		*2	
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V		*2	
Maximum Clamp Current	ICLAMP	-2.0	2.0	mA	*6		
Maximum Total Clamp Current	Σ ICLAMP	_	20	mA	*6		
"L" level Max. output current	lo _{L1}	_	15	mA	Normal output	*3	
"L" level Avg. output current	lolav1	_	4	mA	Normal output, average value	*4	
"L" level Max. output current	lol2	_	40	mA	High current output	*3	
"L" level Avg. output current	lolav2	_	30	mA	High current output, average value	*4	
"L" level Max. overall output current	∑ l ol1	_	100	mA	Total normal output		
"L" level Max. overall output current	∑lol2	_	330	mA	Total high current output		
"L" level Avg. overall output current	∑lolav1	_	50	mA	Total normal output, average value	*5	
"L" level Avg. overall output current	∑lolav2	_	250	mA	Total high current output, average value	*5	
"H" level Max. output current	Іон1	_	-15	mA	Normal output	*3	
"H" level Avg. output current	lohav1	_	-4	mA	Normal output, average value	*4	
"H" level Max. output current	Іон2	_	-40	mA	High current output	*3	
"H" level Avg. output current	lohav2	_	-30	mA	High current output, average value	*4	
"H" level Max. overall output current	∑Іон1	_	-100	mA	Total normal output		
"H" level Max. overall output current	∑loн2	_	-330	mA	Total high current output		
"H" level Avg. overall output current	∑ I ohav1	_	-50	mA	Total normal output, average value	*5	
"H" level Avg. overall output current	∑Iohav2	_	-250	mA	Total high current output, average value	*5	
Dower consumption	Pp	_	500	mW	MB90F598G		
Power consumption	PD	_	400	mW	MB90598G		
Operating temperature	TA	-40	+85	°C			
Storage temperature	Тѕтс	- 55	+150	°C			

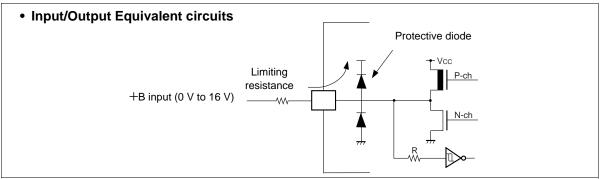
^{*1:} AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*6:

- Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

Document Number: 002-07700 Rev. *A

^{*2:} VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the VI rating.


^{*3:} The maximum output current is a peak value for a corresponding pin.

^{*4:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

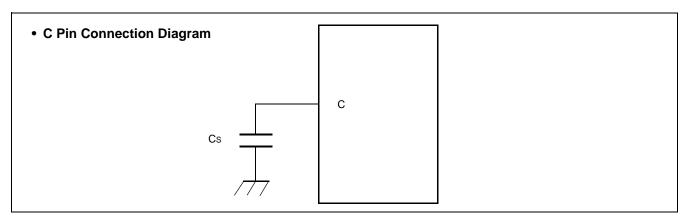
Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Document Number: 002-07700 Rev. *A

11.2 Recommended Conditions

(Vss = AVss = 0.0 V)


Parameter	Symbol	Value			Unit	Remarks			
Farameter	Syllibol	Min	Тур	Max	Oilit	Remarks			
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation			
Fower supply voltage	AVcc	3.0	_	5.5	V	Maintains RAM data in stop mode			
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*			
Operating temperature	TA	-40	_	+85	°C				

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \,^{\circ}C \text{ to } +85 \,^{\circ}C)$

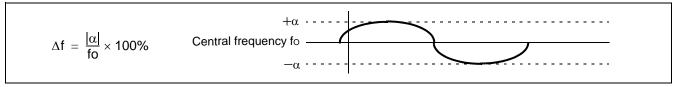
			(***	0.0 V <u></u>	0, 100 /	1100 0.0	, , , ,	10 0 10 1
Parameter	Symbol	Pin name	Condition		Value	Unit	Remarks	
Parameter	Syllibol	Fill flame	Condition	Min	Тур	Max	Offic	Remarks
Input H voltage	VIHS	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V	
,	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc +0.3	V	
Input L voltage	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
	VILM	MD input pin	_	Vss - 0.3	_	Vss +0.3	V	
Output H	V _{OH1}	Output pins except P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH1} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
voltage	V _{OH2}	P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH2} = -30.0 \text{ mA}$	Vcc - 0.5	_	_	V	
Output L	V _{OL1}	Output pins except P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL1} = 4.0 \text{ mA}$	_	_	0.4	V	
voltage	V _{OL2}	P70 to P87	Vcc = 4.5 V, IoL2 = 30.0 mA	_	_	0.5	V	

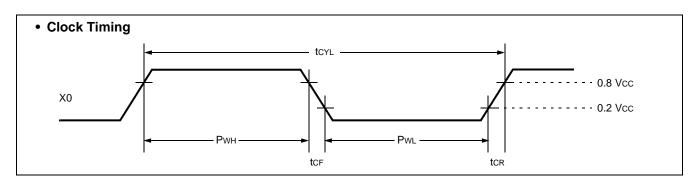
Parameter	Symbol	Pin name	Condition		Value			Remarks
Parameter	arameter Symbol Pin name		Condition	Min	Тур Мах		Unit	Remarks
Input leak current	lı∟		Vcc = 5.5 V, Vss < Vı < Vcc	-5	1	5	μА	
	Icc		Vcc = 5.0 V±10%, Internal frequency:	_	35	60	mA	MB90598G
	ICC		16 MHz, At normal operating	_	40	60	mA	MB90F598G
	Iccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep	_	11	18	mA	
Power supply current *	Істѕ	Vcc	Vcc = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA	
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	_	_	20	μА	
	Іссн2		Vcc = 5.0 V±10%, At Hardware stand- by mode, T _A = 25°C	_	_	20	μА	MB90598G
				_	50	100	μА	MB90F598G

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

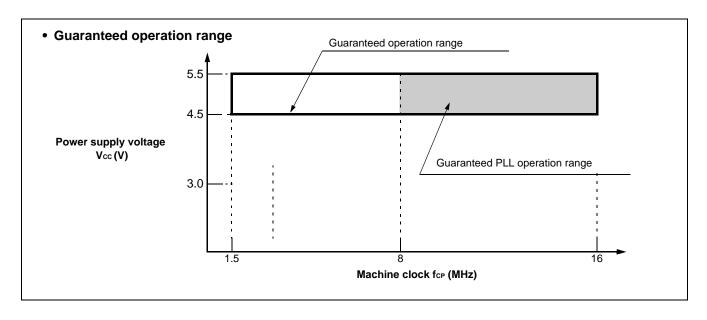
Parameter	Symbol	Pin name	Condition		Value	Unit	Remarks	
rarameter	Symbol	riii iiaiiie	Condition	Min	Тур	Max	Ollic	Remarks
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
		P70 to P87	_	_	15	30	pF	
Pull-up resistance	Rup	RST	_	25	50	100	k Ω	
Pull-down resistance	Rdown	MD2		25	50	100	kΩ	

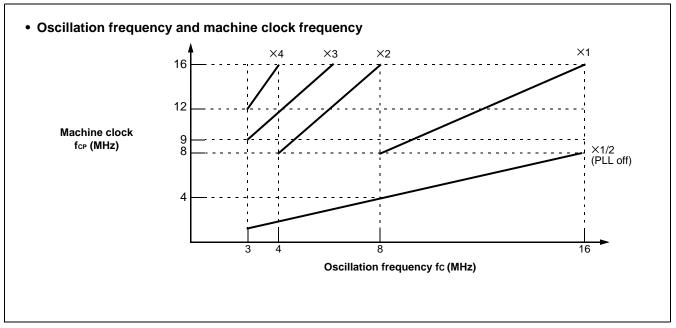
^{*:} The power supply current testing conditions are when using the external clock.

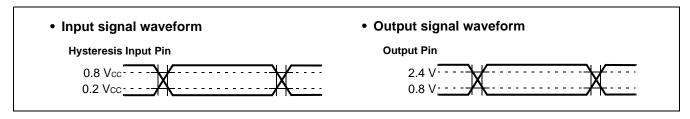

11.4 AC Characteristics


11.4.1 Clock Timing

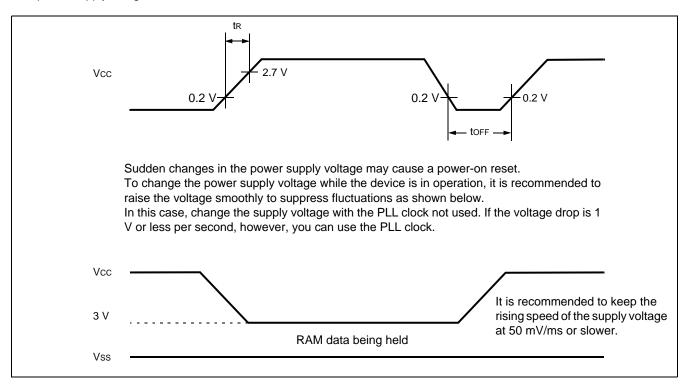
(Vcc = 5.0 V
$$\pm$$
10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)


	,,,				1	, I	
Parameter	Symbol	Pin name		Value		Unit	Remarks
r ai ailletei	Symbol	Fill Hallie	Min Typ Max		Oilit	iveillai və	
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit
Oscillation cycle time	tcyL	X0, X1	200	_	333	ns	When using oscillation circuit
External clock frequency	fc	X0, X1	3	_	16	MHz	When using external clock
External clock cycle time	tcyL	X0, X1	62.5	_	333	ns	When using external clock
Frequency deviation with PLL *	Δf	_	_	_	5	%	
Input clock pulse width	Pwh, Pwl	X0	10	_	_	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcr, tcr	X0	_	_	5	ns	When using external clock
Machine clock frequency	fcp	_	1.5	_	16	MHz	
Machine clock cycle time	t CP	_	62.5	_	666	ns	
Flash Read cycle time	tcyL	_	_	2*tcp	_	ns	When Flash is accessed via CPU


^{*:} Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.



AC characteristics are set to the measured reference voltage values below.

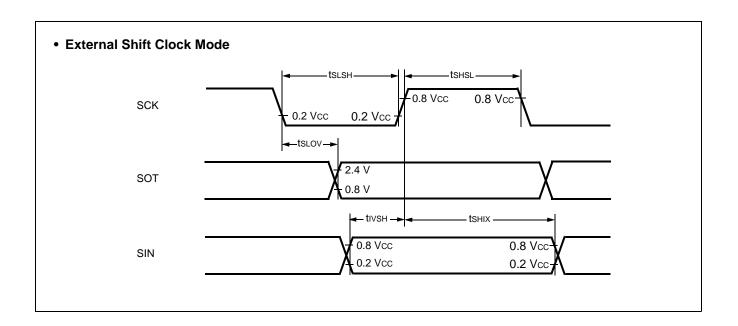

11.4.3 Power On Reset

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
raiailletei	Syllibol	riii iiaiiie	Condition	Min	Max	Ollic	ivellial K5	
Power on rise time	t _R	Vcc		0.05	30	ms	*	
Power off time	toff	Vcc	_	50	_	ms	Due to repetitive operation	

^{*:} Vcc must be kept lower than 0.2 V before power-on.

Notes:

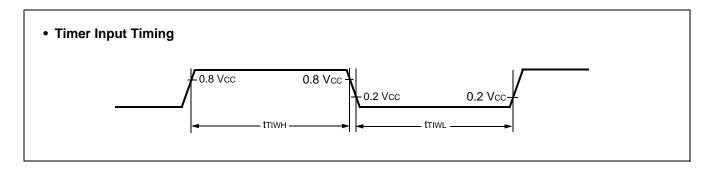
- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.


11.4.4 UARTO/1, Serial I/O Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 ^{\circ}C to +85 ^{\circ}C)$

Parameter	Symbol Pin name		Condition	Value		Unit	Remarks
Farameter	Syllibol	Fili lialile	Condition	Min	Max	Ollit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT$ delay time	tsLov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
Valid SIN ⇒ SCK ↑	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C _L = 80 pF + 1 TTL.	100	_	ns	
SCK ↑ ⇒ Valid SIN hold time	t shix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Document Number: 002-07700 Rev. *A Page 39 of 51



(5) Timer Input Timing

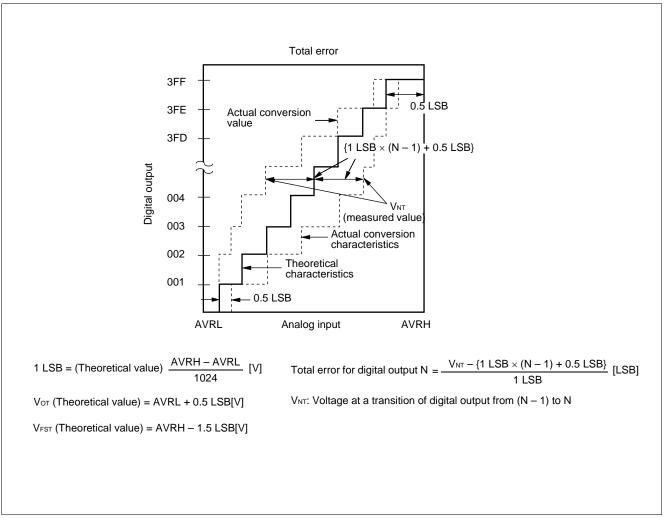
 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 ^{\circ}C to +85 ^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
raiailletei	Symbol	Fill Hallie	Condition	Min	Max	Ollit	
Input pulse width	t тıwн	TIN0, TIN1	_	4 tcp	_	ns	
input puise width	t⊤ıw∟	IN0 to IN3		4 ICP			

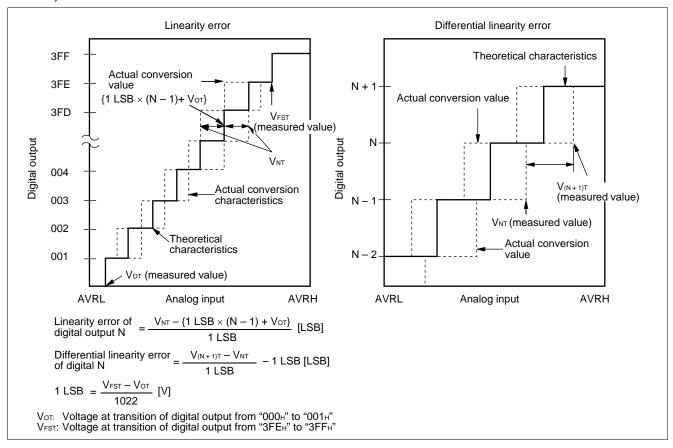
11.4.5 Trigger Input Timing

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)

Parameter	Symbol	Pin name Condition Value		lue	Unit	Remarks		
Farameter	Syllibol	riii iiaiiie	Condition	Min	Max	Offic	Remarks	
Input pulse width	t TRGH	INT0 to INT7,		5 tcp		ns	Under normal operation	
input puise width	t TRGL	ADTG	_	1	_	μs	In stop mode	

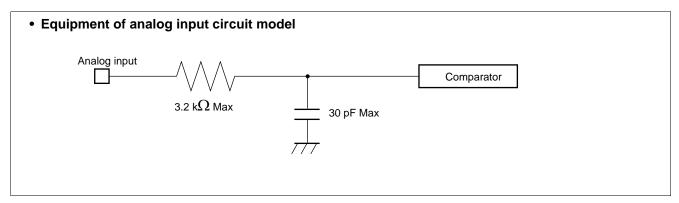


11.6 A/D Converter Glossary


Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

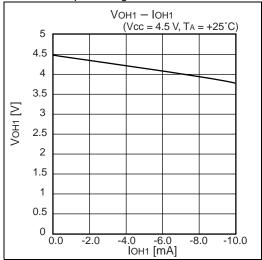
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.



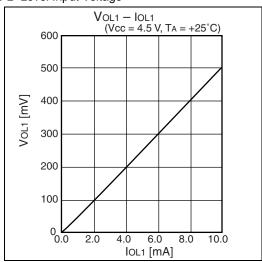
11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

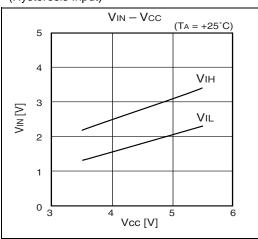
- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor. When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = 4.00 μs @machine clock of 16 MHz).

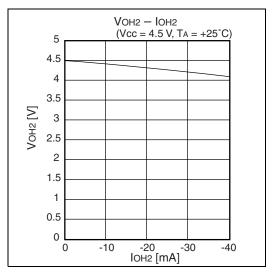

■ Error

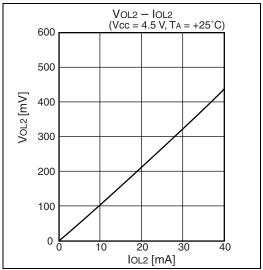
The smaller the | AVRH - AVRL |, the greater the error would become relatively.



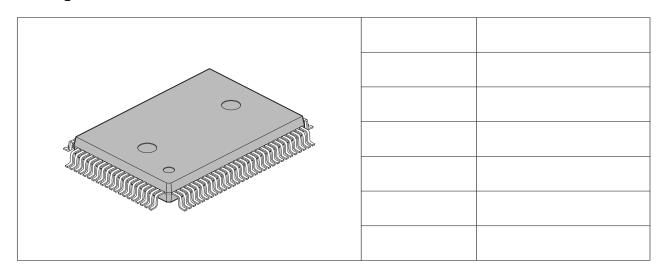
12. Example Characteristics

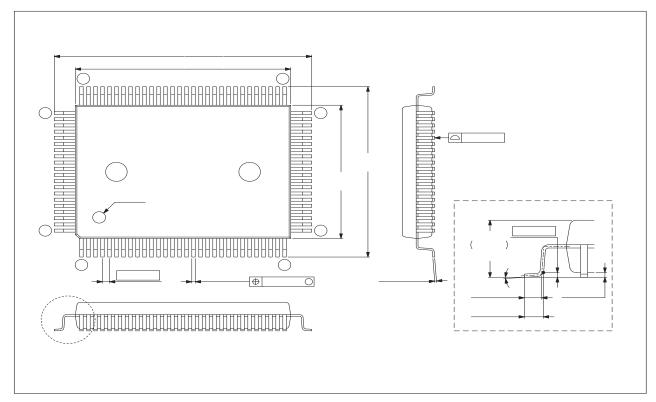

■ H" Level Output Voltage




■ L" Level Input Voltage

■ H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)





13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB** Controllers cypress.com/usb Wireless/RF cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-07700 Rev. *A Revised November 30, 2016 Page 51 of 51