

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, EBI/EMI, I ² C, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 18x14b; D/A 2x8b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-HWQFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs3a37a3a01cnb-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.3 System (2 of 2)

Feature	Functional description
Memory Protection Unit (MPU)	Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided for memory protection. See section 16, Memory Protection Unit (MPU) in User's Manual.
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. The refresh-permitted period can be set to refresh the counter and used as the condition for detecting when the system runs out of control. See section 26, Watchdog Timer (WDT) in User's Manual.
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. It can be used to reset the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the count value in the registers. See section 27, Independent Watchdog Timer (IWDT) in User's Manual.

Table 1.4 Event link

Feature	Functional description
Event Link Controller (ELC)	The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User's Manual.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User's Manual.
DMA Controller (DMAC)	A 4-channel DMA Controller (DMAC) module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User's Manual.

Table 1.6External bus interface

Feature	Functional description
External bus	 CS area: Connected to the external devices (external memory interface) QSPI area: Connected to the QSPI (external device interface).

Feature	Functional description
Segment LCD Controller (SLCDC)	 The SLCDC provides the following functions: Waveform A or B selectable The LCD driver voltage generator can switch between an internal voltage boosting method, a capacitor split method, and an external resistance division method Automatic output of segment and common signals based on automatic display data register read The reference voltage generated when operating the voltage boost circuit can be selected in 16 steps (contrast adjustment) The LCD can be made to blink. See section 48, Segment LCD Controller (SLCDC) in User's Manual.
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does not come into direct contact with the electrode. See section 44, Capacitive Touch Sensing Unit (CTSU) in User's Manual.

Table 1.11 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC generation polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 34, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 45, Data Operation Circuit (DOC) in User's Manual.

Table 1.12 Security

Feature	Functional description
Secure Crypto Engine 5 (SCE5)	 Security algorithm: Symmetric algorithm: AES Other support features: TRNG (True Random Number Generator) Hash-value generation: GHASH.

R7FS3A37A2A01CLJ														
A B C D E F G H J K														
10	P407	P409	P412	VCC	P212/ EXTAL	P215/ XCIN	VCL	P403	P400	P000	10			
9	P915/ USB_DM	P914/ USB_DP	P413	VSS	P213/ XTAL	P214/ XCOUT	VBATT	P405	P401	P001	9			
8	VCC_ USB	VSS_ USB	VCC_US B_LDO	P411	P415	P708	P404	P003	P004	P002	8			
7	P205	P204	P206	P408	P414	P406	P006	P007	P008	P005	7			
6	VSS	VCC	P202	P203	P410	P402	P505	AVSS0	P011/ VREFL0	P010/ VREFH0	6			
5	P200	P201/MD	P307	RES	P113	P600	P504	AVCC0	P013/ VREFL	P012/ VREFH	5			
4	P305	P304	P808	P306	P115	P601	P503	P100	P015	P014	4			
3	P809	P303	P110/TDI	P111	P609	P602	P107	P103	VSS	vcc	3			
2	P300/ TCK/ SWCLK	P302	P301	P114	P610	P603	P106	P101	P501	P502	2			
1	P108/ TMS/ SWDIO	P109/ TDO/ SWO	P112	P608	VCC	VSS	P105	P104	P102	P500	1			
	A	В	С	D	E	F	G	Н	J	К				

Pin nu	umber						ž				Timer	s			Comm	nunica	tion int	erface	6		Analo	gs		нмі	
LGA145	LQFP144	BGA121	LQFP100	LGA100	LQFP64	QFN64	Power, System, Cloc Debug, CAC, VBATT	Interrupt	I/O ports	External bus	AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN	sci	IIC	SPI/QSPI	SSIE	SDHI	ADC14	DAC12, OPAMP	ACMPLP	SLCDC	CTSU
К5	116	J4	79	G4					P503			RGA			XICEN	RTS2/ SS2 SCK3		QIO1			AN023		O 0	SEG51	
L5	117	H4	80	G5					P504	ALE		GTET RGB			USB_I D	SCK2 CTS3_ RTS3/ SS3		QIO2			AN024				
K6	118	J5	81	G6				IRQ14	P505							RXD2/ MISO2 /SCL2		QIO3			AN025				
L6	119	H5						IRQ15	P506							TXD2/ MOSI2					AN026				
N4	120								P507							/SDAZ					AN027				
N5	121	L4	82	КЗ			VCC																		
M5	122	K4	83	J3			VSS																		
M6	123	K5	84	J4	52	52		IRQ7	P015												AN010				TS28
N6	124	L5	85	K4	53	53			P014												AN009	DA0			
M7	125	K6	86	J5	54	54	VREFL		P013												AN008	AMP1+			
N7	126	L6	87	K5	55	55	VREF H		P012												AN007	AMP1-			
L7	127	J6	88	H5	56	56	AVCC0																		
L8	128	J7	89	H6	57	57	AVSS0																		
M8	129	K7	90	J6	58	58	VREFL 0	IRQ15	P011												AN006	AMP2+			TS31
N8	130	L7	91	K6	59	59	VREF H0	IRQ14	P010												AN005	AMP2-			TS30
M9	131							IRQ13	P009												AN015				
N9	132	H6	92	J7				IRQ12	P008												AN014				
K7	133	H7	93	H7					P007												AN013	AMP3 O			
L9	134	H8	94	G7				IRQ11	P006												AN012	AMP3-			
K8	135	L8	95	K7				IRQ10	P005												AN011	AMP3+			
K9	136	J8	96	J8	60	60		IRQ3	P004												AN004	AMP2 O			
K10	137	K8	97	H8	61	61			P003												AN003	AMP1 O			
M10	138	J9	98	K8	62	62		IRQ2	P002												AN002	AMP0 O			
N10	139	K9	99	K9	63	63		IRQ7	P001												AN001	AMP0-			TS22
L10	140	L9	100	K10	64	64		IRQ6	P000												AN000	AMP0+			TS21
N11	141						VSS																		
N12	142						VCC																		
M11	143	L10						IRQ14	P512				GTIOC 0A		CTX0	TXD4/ MOSI4	SCL2								
M12	144	K10						IRQ15	P511				GTIOC 0B		CRX0	RXD4/ MISO4	SDA2								
E5		F6					NC									730L4									

S3A3 Datasheet

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

 $VCC^{*1} = AVCC0 = VCC_USB^{*2} = VCC_USB_LDO^{*2} = 1.6$ to 5.5V, VRERH = VREFH0 = 1.6 to AVCC0, VBATT = 1.6 to 3.6V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0V, Ta = T_{opr}

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specifications in each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pin to meet your conditions.

Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the AC specification of each function is not guaranteed.

2.2.8 IIC I/O Pin Output Characteristics

Figure 2.16 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C

Table 2.11 Operating and standby current (1) (2 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ* ¹⁰	Max	Unit	Test conditions
Supply current* ¹	Low-speed mode ^{*3}	Normal mode	All peripheral clock disabled, while (1) code executing from flash* ⁵	ICLK = 1 MHz	I _{CC}	0.4	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 1 MHz		0.6	-		
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 1 MHz		1.1	-		*8
			All peripheral clock enabled, code executing from SRAM ^{*5}	ICLK = 1 MHz		-	2.5		
		Sleep mode	All peripheral clock disabled ^{*5}	ICLK = 1 MHz		0.3	-		*7
			All peripheral clock enabled* ⁵	ICLK = 1 MHz		1.0	-		*8
	Low-voltage mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 4 MHz	I _{CC}	1.8	-	mA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 4 MHz		3.0	-		
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 4 MHz		3.3	-		*8
			All peripheral clock enabled, code executing from SRAM ^{*5}	ICLK = 4 MHz		-	9.0		
		Sleep mode	All peripheral clock disabled ^{*5}	ICLK = 4 MHz	-	1.4	-		*7
			All peripheral clock enabled ^{*5}	ICLK = 4 MHz		2.9	-		*8
	Subosc- speed mode ^{*4}	Normal mode	All peripheral clock disabled, while (1) code executing from flash*5	ICLK = 32.768 kHz	I _{CC}	9.3	-	μA	*8
			All peripheral clock enabled, while (1) code executing from flash*5	ICLK = 32.768 kHz		17.2	-		
			All peripheral clock enabled, code executing from SRAM ^{*5}	ICLK = 32.768 kHz		-	106.0		
		Sleep mode	All peripheral clock disabled* ⁵	ICLK = 32.768 kHz		6.0	-		
			All peripheral clock enabled*5	ICLK = 32.768 kHz		14.0	-		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The clock source is HOCO.

Note 3.The clock source is MOCO.Note 4.The clock source is the sub-clock oscillator.

Note 5. This does not include BGO operation.

Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.

 Note 7.
 FCLK, BCLK, PCLKA, PCLKB, PCLKC and PCLKD are set to divided by 64.

 Note 8.
 FCLK, BCLK, PCLKA, PCLKB, PCLKC and PCLKD are the same frequency as that of ICLK.

 Note 9.
 FCLK, BCLK, and PCLKB are set to divided by 2 and PCLKA, PCLKC and PCLKD are the same frequency as that of ICLK.

 Note 10. VCC = 3.3 V.

2.3 AC Characteristics

2.3.1 Frequency

Table 2.17Operation frequency value in high-speed operating modeConditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter			Symbol	Min	Тур	Max* ⁵	Unit
Operation	System clock (ICLK)*4	2.7 to 5.5 V	f	0.032768	-	48	MHz
frequency		2.4 to 2.7 V		0.032768	-	16	
	FlashIF clock (FCLK)*1, *2, *4	2.7 to 5.5 V		0.032768	-	32	
		2.4 to 2.7 V		0.032768	-	16	
	Peripheral module clock (PCLKA)*4	2.7 to 5.5 V		-	-	48	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKB)*4	2.7 to 5.5 V		-	-	32	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKC)*3, *4	2.7 to 5.5 V		-	-	64	
		2.4 to 2.7 V		-	-	16	
	Peripheral module clock (PCLKD)*4	2.7 to 5.5 V		-	-	64	
		2.4 to 2.7 V		-	-	16	
	External bus clock (BCLK)*4	2.7 to 5.5 V		-	-	24	
		2.4 to 2.7 V		-	-	16	
	EBCLK pin output	2.7 to 5.5 V		-	-	12	
		2.4 to 2.7 V		-	-	8	-

Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.

Note 4. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 5. The maximum value of operation frequency does not include the internal oscillator errors. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.

- Note 3. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
- Note 4. The maximum value of operation frequency does not include the internal oscillator errors. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.

Table 2.20	Operation frequency value in low-voltage mode
Conditions: VCC	= AVCC0 = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max* ⁵	Unit
Operation	System clock (ICLK)*4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	FlashIF clock (FCLK)*1, *2, *4	1.6 to 5.5 V		0.032768	-	4	
	Peripheral module clock (PCLKA)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKC)* ^{3, *4}	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*4	1.6 to 5.5 V		-	-	4	
	External bus clock (BCLK)*4	1.6 to 5.5 V		-	-	4	
	EBCLK pin output	1.8 to 5.5 V		-	-	4	
		1.6 to 1.8 V		-	-	2	

Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.

Note 4. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.

Table 2.21 Operation frequency value in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max	Unit
Operation	System clock (ICLK)* ³	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	FlashIF clock (FCLK)*1, *3	1.8 to 5.5 V		27.8528	32.768	37.6832	
	Peripheral module clock (PCLKA)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKC)*2, *3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)*3	1.8 to 5.5 V		-	-	37.6832	
	External bus clock (BCLK)*3	1.8 to 5.5 V		-	-	37.6832	
	EBCLK pin output	1.8 to 5.5 V	1	-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Table 2.26	Timing of recovery from low power modes (3)
------------	---

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Low-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (1 MHz)* ²	t _{SBYMC}	-	2	3	ms	Figure 2.36
		External clock input to main clock oscillator	System clock source is main clock oscillator (1 MHz)* ³	t _{SBYEX}	-	28	50	μs	
		System clock sou	urce is MOCO	t _{SBYMO}	-	25	35	μs	

Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Table 2.27Timing of recovery from low power modes (4)

Parameter				Symbol	Min	Тур	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Low-voltage mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (4 MHz)* ²	t _{SBYMC}	-	2	3	ms	Figure 2.36
		External clock input to main clock oscillator	System clock source is main clock oscillator (4 MHz)* ³	t _{SBYEX}	-	108	130	μs	
		System clock sou	urce is HOCO	t _{SBYHO}	-	108	130	μs	

Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined by the following expression.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Table 2.28Timing of recovery from low power modes (5)

Parameter			Symbol	Min	Тур	Мах	Unit	Test conditions
Recovery time from Software	Subosc-speed mode	System clock source is sub-clock oscillator (32.768 kHz)	t _{SBYSC}	-	0.85	1	ms	Figure 2.36
Standby mode*1		System clock source is LOCO (32.768 kHz)	t _{SBYLO}	-	0.85	1.2	ms	

Note 1. The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode.

Figure 2.44 External bus timing/page read cycle (bus clock synchronized)

Figure 2.45 External bus timing/page write cycle (bus clock synchronized)

Figure 2.62 SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to any value other than 1/2)

Figure 2.66 SPI timing (slave, CPHA = 0)

Table 2.50A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
14-bit mode						
Resolution		-	-	14	Bit	-
Conversion time* ¹ (Operation at PCLKC = 32 MHz)	Permissible signal source impedance Max. = 1.3 kΩ	1.59	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
		2.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error		-	±2.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Full-scale error		-	±3.0	±18	LSB	High-precision channel
				±24.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±5.0	±20	LSB	High-precision channel
				±32.0	LSB	Other than above
DNL differential nonlinearity error		-	±4.0	-	LSB	-
INL integral nonlinearity e	error	-	±4.0	±12.0	LSB	-

The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not Note: include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for Note 1. the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O V_{OH}, V_{OL}, and Other Characteristics.

Table 2.51A/D conversion characteristics (4) in low power A/D conversion mode (1 of 2)Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V

Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Мах	Unit	Test conditions
Frequency		1	-	24	MHz	-
Analog input capacitance*2	Cs	-	-	8 (reference data)	pF	High-precision channel
		-	-	9 (reference data)	pF	Normal-precision channel
Analog input resistance	Rs	-	-	2.5 (reference data)	kΩ	High-precision channel
		-	-	6.7 (reference data)	kΩ	Normal-precision channel
Analog input voltage range	Ain	0	-	VREFH0	V	-

12-bit mode

Resolution		-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 24 MHz)	Permissible signal source impedance Max. = 1.1 kΩ2.253.38		-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error		-	±0.5	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlinearity error		-	±1.0	-	LSB	-

2.9 POR and LVD Characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Voltage detection level*1	Power-on reset (POR)	V _{POR}	1.27	1.42	1.57	V	Figure 2.85, Figure 2.86	
	Voltage detection circuit (LVD0)*2	V _{det0_0}	3.68	3.85	4.00	V	Figure 2.87	
		V _{det0_1}	2.68	2.85	2.96		At falling edge	
		V _{det0_2}	2.38	2.53	2.64		100	
		V _{det0_3}	1.78	1.90	2.02			
		V _{det0_4}	1.60	1.69	1.82			
	Voltage detection circuit (LVD1)*3	V _{det1_0}	4.13	4.29	4.45	V	Figure 2.88	
		V _{det1_1}	3.98	4.16	4.30		At falling edge	
		V _{det1_2}	3.86	4.03	4.18			
		V _{det1_3}	3.68	3.86	4.00			
		V _{det1_4}	2.98	3.10	3.22			
		V _{det1_5}	2.89	3.00	3.11			
		V _{det1_6}	2.79	2.90	3.01			
		V _{det1_7}	2.68	2.79	2.90			
		V _{det1_8}	2.58	2.68	2.78			
		V _{det1_9}	2.48	2.58	2.68			
		V _{det1_A}	2.38	2.48	2.58			
		V _{det1_B}	2.10	2.20	2.30			
		V _{det1_C}	1.84	1.96	2.05			
		V _{det1_D}	1.74	1.86	1.95			
		V _{det1_E}	1.63	1.75	1.84			
		V _{det1_F}	1.60	1.65	1.73			
	Voltage detection circuit (LVD2)*4	V _{det2_0}	4.11	4.31	4.48	V	Figure 2.89	
		V _{det2_1}	3.97	4.17	4.34]	At falling edge	
		V _{det2_2}	3.83	4.03	4.20		-	
		V _{det2_3}	3.64	3.84	4.01			

Table 2.62	Power-on reset circuit and voltage detection circuit characteristics (1)
------------	--

Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection.

Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits.

Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.

Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.

Figure 2.86 Power-on reset timing

Figure 2.87 Voltage detection circuit timing (V_{det0})

2.10 VBATT Characteristics

Table 2.64Battery backup function characteristicsConditions: VCC = AVCC0 = 1.6V to 5.5V, VBATT = 1.6 to 3.6 V

Parameter		Symbol	Min	Тур	Мах	Unit	Test conditions
Voltage level for switching to battery backup (falling)		V _{DETBATT}	1.99	2.09	2.19	V	Figure 2.90,
Hysteresis width for switching to battery back up		V _{VBATTH}	-	100	-	mV	Figure 2.91
VCC-off period for starting power supply switching		t _{VOFFBATT}	300	-	-	μs	-
Voltage detection level VBATT_Power-on reset (VBATT_POR)		V _{VBATPOR}	1.30	1.40	1.50	V	Figure 2.90, Figure 2.91
Wait time after VBATT_POR reset time cancellation		t _{VBATPOR}	-	-	3	mS	-
Level for detection of voltage drop on	VBTLVDLVL[1:0] = 10b	V _{DETBATLVD}	2.11	2.2	2.29	V	Figure 2.92
the VBATT pin (falling)	VBTLVDLVL[1:0] = 11b		1.92	2	2.08	V	
Hysteresis width for VBATT pin LVD		V _{VBATLVDTH}	-	50	-	mV	
VBATT pin LVD operation stabilization time		t _{d_vbat}	-	-	300	μs	Figure 2.92
VBATT pin LVD response delay time		t _{det_vbat}	-	-	350	μs	
Allowable voltage change rising/falling gradient		dt/dVCC	1.0	-	-	ms/V	-
VCC voltage level for access to the VBATT backup registers		V_BKBATT	1.8	-	-	V	-

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 2.90 Power supply switching and LVD0 reset timing

Revision History	S3A3 Microcontroller Group Datasheet
------------------	--------------------------------------

Rev.	Date	Summary
1.00	Feb 23, 2016	1st release
1.10	Jul 3, 2018	Updated for 1.10

Website and Support

Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related documentation, and get support.

Synergy	Software	renesassynergy.com/software
	Synergy Software Package	renesassynergy.com/ssp
	Software add-ons	renesassynergy.com/addons
	Software glossary	renesassynergy.com/softwareglossary
	Development tools	renesassynergy.com/tools
Synergy	Hardware	renesassynergy.com/hardware
	Microcontrollers	renesassynergy.com/mcus
	MCU glossary	renesassynergy.com/mcuglossary
	Parametric search	renesassynergy.com/parametric
	Kits	renesassynergy.com/kits
Synergy	Solutions Gallery	renesassynergy.com/solutionsgallery
	Partner projects	renesassynergy.com/partnerprojects
	Application projects	renesassynergy.com/applicationprojects
Self-serv	vice support resources:	
	Documentation	renesassynergy.com/docs
	Knowledgebase	renesassynergy.com/knowledgebase
	Forums	renesassynergy.com/forum
	Training	renesassynergy.com/training
	Videos	renesassynergy.com/videos
	Chat and web ticket	renesassynergy.com/support

Proprietary Notice

All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas.

Arm[®] and Cortex[®] are registered trademarks of Arm Limited. CoreSight[™] is a trademark of Arm Limited.

CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.

Magic Packet[™] is a trademark of Advanced Micro Devices, Inc.

SuperFlash[®] is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders.