

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401ccu6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- SD/SDIO/MMC host interface
- ADC

3.9 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.10 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected to the 16 external interrupt lines.

3.14 Power supply supervisor

3.14.1 Internal reset ON

This feature is available for V_{DD} operating voltage range 1.8 V to 3.6 V.

The internal power supply supervisor is enabled by holding PDR_ON high.

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The devices remain in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The devices also feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.14.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low.

An external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to *Figure 5: Power supply supervisor interconnection with internal reset OFF*.

Figure 5. Power supply supervisor interconnection with internal reset OFF⁽¹⁾

1. The PRD_ON pin is only available on the WLCSP49 and UFBGA100 packages.

Figure 7. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 8*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.
- Note: The minimum value of V₁₂ depends on the maximum frequency targeted in the application

The RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.17 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The devices can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/ tamper/ time stamp events).

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain when selected.

The devices exit the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event occurs.

Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.18 V_{BAT} operation

The VBAT pin allows to power the device V_{BAT} domain from an external battery, an external super-capacitor, or from V_{DD} when no external battery and an external super-capacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The VBAT pin supplies the RTC and the backup registers.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from V_{BAT} operation. When PDR_ON pin is not connected to V_{DD} (internal Reset OFF), the V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD} .

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	х	х	х	х	5.25	10.5	APB2 (max. 84 MHz)
USART2	х	х	х	х	х	х	2.62	5.25	APB1 (max. 42 MHz)
USART6	х	N.A	х	х	х	х	5.25	10.5	APB2 (max. 84 MHz)

 Table 6. USART feature comparison

3.22 Serial peripheral interface (SPI)

The devices feature up to four SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 and SPI4 can communicate at up to 42 Mbit/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.23 Inter-integrated sound (I²S)

Two standard I^2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I^2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I^2Sx can be served by the DMA controller.

3.24 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance.

The PLLI2S configuration can be modified to manage an I²S sample rate change without disabling the main PLL (PLL) used for the CPU.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer.

3.29 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.30 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.31 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F401xB/STM32F401xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using any high-speed channel available. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

	Pir	n Nun	nber				re			
UQFN48	WLCSP49	LQFP64	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structu	Notes	Alternate functions	Additional functions
13	E4	17	26	L3	PA3	I/O	FT	-	USART2_RX, TIM2_CH4, TIM5_CH4, TIM9_CH2, EVENTOUT	ADC1_IN3
-	-	18	27	-	VSS	s	-	-	-	-
-	-	19	28	-	VDD	s	-	-	-	-
-	-	-	-	E3	BYPASS_ REG	I	FT	-	-	-
14	G6	20	29	М3	PA4	I/O	FT	-	SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, EVENTOUT	ADC1_IN4
15	F5	21	30	K4	PA5	I/O	FT	-	SPI1_SCK, TIM2_CH1/TIM2_ETR, EVENTOUT	ADC1_IN5
16	F4	22	31	L4	PA6	I/O	FT	-	SPI1_MISO, TIM1_BKIN, TIM3_CH1, EVENTOUT	ADC1_IN6
17	F3	23	32	M4	PA7	I/O	FT	-	SPI1_MOSI, TIM1_CH1N, TIM3_CH2, EVENTOUT	ADC1_IN7
-	-	24	33	K5	PC4	I/O	FT	-	EVENTOUT	ADC1_IN14
-	-	25	34	L5	PC5	I/O	FT	-	EVENTOUT	ADC1_IN15
18	G5	26	35	M5	PB0	I/O	FT	-	TIM1_CH2N, TIM3_CH3, EVENTOUT	ADC1_IN8
19	G4	27	36	M6	PB1	I/O	FT	-	TIM1_CH3N, TIM3_CH4, EVENTOUT	ADC1_IN9
20	G3	28	37	L6	PB2	I/O	FT	-	EVENTOUT	BOOT1
-	-	-	38	M7	PE7	I/O	FT	-	TIM1_ETR, EVENTOUT	-
-	-	-	39	L7	PE8	I/O	FT	-	TIM1_CH1N, EVENTOUT	-
-	-	-	40	M8	PE9	I/O	FT	-	TIM1_CH1, EVENTOUT	-
-	-	-	41	L8	PE10	I/O	FT	-	TIM1_CH2N, EVENTOUT	-
-	-	-	42	M9	PE11	I/O	FT	-	SPI4_NSS, TIM1_CH2, EVENTOUT	-
-	-	-	43	L9	PE12	I/O	FT	-	SPI4_SCK, TIM1_CH3N, EVENTOUT	-
-	-	-	44	M10	PE13	I/O	FT	-	SPI4_MISO, TIM1_CH3, EVENTOUT	-

Table 8.	STM32F401xB/STM32F401xC pin defin	itions (continued)

	Table 9. Alternate function mapping (continued)																
Port	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15	
	Pon	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
ц т	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
Dor	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

STM32F401xB STM32F401xC

Bus	Boundary address	Peripheral
	0x4001 4C00- 0x4001 FFFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4/I2S4
	0x4001 3000 - 0x4001 33FF	SPI1
	0x4001 2C00 - 0x4001 2FFF	SDIO
APB2	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7400 - 0x4000 FFFF	Reserved

Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)

6.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA}, V_{DD} and $V_{BAT})^{(1)}$	-0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage for BOOT0	V_{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	
V _{SSX} -V _{SS}	Variations between all the different ground pins including $V_{REF\text{-}}$	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)		n 6.3.14: naximum ectrical	

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 33: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 ${\sf I}_{\sf SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Figure 25. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 39* and *Table 40* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
400	HSI user trimming step ⁽²⁾	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	-8	-	4.5	%
ACCHSI	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	-4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	-1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 39. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization.

4. Factory calibrated, parts not soldered.

Figure 26. ACC_{HSI} versus temperature

1. Guaranteed by characterization.

Low-speed internal (LSI) RC oscillator

Table 40.	LSI	oscillator	characteristics	(1)
-----------	-----	------------	-----------------	----	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization.

3. Guaranteed by design.

Symbol	Param	eter	Conditions	Min	Тур	Мах	Unit
	FT and NRST I/C hysteresis) input	1.7 V≤V _{DD} ≤3.6 V	-	$10\% \ V_{DD}^{(3)}$	-	V
V _{HYS}	BOOT0 I/O input	hysteresis	1.75 V≤V _{DD} ≤3.6 V, -40 °C≤T _A ≤105 °C	_	100	_	mV
			1.7 V⊴V _{DD} ≤3.6 V, 0 °C⊴T _A ≤105 °C		100		
L.	I/O input leakage	current (4)	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	
'lkg	I/O FT input leaka	age current ⁽⁵⁾	$V_{IN} = 5 V$	-	-	3	μΛ
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10 (OTG_FS_ID)	V _{IN} = V _{SS}	30	40	50	
		PA10 (OTG_FS_ID)		7	10	14	kO
	Weak pull-down equivalent resistor ⁽⁷⁾	All pins except for PA10 (OTG_FS_ID)	V _{IN} = V _{DD}	30	40	50	K22
		PA10 (OTG_FS_ID)		7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitan	се	_	-	5	_	pF

Table 34. I/O Static characteristics (continueu)	Table 54.	I/O static	characteristics	(continued)
--	-----------	------------	-----------------	-------------

1. Guaranteed by design.

2. Guaranteed by test in production.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 53: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 53: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 30*.

Figure 32. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The external capacitor must be placed as close as possible to the device.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in 3. Table 57. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in Table 58 are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1	1	-	t _{TIMxCLK}
		84 MHz	11.9	-	ns
		AHB/APBx prescaler>4,	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 84 MHz	11.9	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4		0	f _{TIMxCLK} /2	MHz
		f _{TIMxCLK} = 84 MHz	0	42	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{COUNTER}	16-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 84 MHz	0.0119	780	μs
t _{MAX_COUNT}	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
	with 52-bit counter	f _{TIMxCLK} = 84 MHz	-	51.1	S

Table 58. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.

Guaranteed by design. 2.

The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx. 3.

6.3.19 Communications interfaces

I²C interface characteristics

The I₂C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table59*. Refer also to *Section 6.3.16: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

The I²C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The I₂C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative.

Symbol	Deremeter	Standard r	mode I ² C ⁽¹⁾	Fast mod	llmit	
Symbol	Parameter	Min	Max	Min	Мах	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο
t _{su(SDA)}	SDA setup time	SDA setup time 250 - 100 -		-		
t _{h(SDA)}	SDA data hold time	0	-	0	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	e 4.7 - 0.6		-	μο	
t _{su(STO)}	Stop condition setup time 4		-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard fast mode	\therefore are er for 0 $50^{(4)}$ 0 $50^{(4)}$		50 ⁽⁴⁾	ns	
Cb	Capacitive load for each bus line	- 400 - 400			pF	

Table 59. I²C characteristics

1. Guaranteed by design.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above t_{SP} (max).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	3	5	ns
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	2	-	-	ns

Table 61. SPI dynamic characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

Figure 35. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

Symbol	Parameter Test conditions		Min	Тур	Max	Unit
ENOB	Effective number of bits	<i>(</i>	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$f_{ADC} = 18 \text{ MHz}$ $V_{DDA} = V_{REF+} = 1.7 \text{ V}$	64	64.2	-	
SNR	Signal-to-noise ratio	Temperature = 25 °C	64	65	-	dB
THD	Total harmonic distortion	ч -	-67	-72	-	

Table 70. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions⁽¹⁾

1. Guaranteed by characterization.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade = 36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio V _{DDA} = V _{REF+} = 3.3 V Input Frequency =		66	67	-	
SNR	Signal-to noise ratio	20 KHz	64	68	-	dB
THD	Total harmonic distortion	iemperature = 25 °C	-70	-72	-	

1. Guaranteed by characterization.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.16 does not affect the ADC accuracy.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes
		Changed current consumption to 128 µA/MHz on cover page. Updated <i>Table 3: Regulator ON/OFF and internal power supply</i> <i>supervisor availability</i> for UFQFPN48. Updated <i>Figure 10: STM32F401xB/STM32F401xC WLCSP49 pinout</i> to show top view instead of bump view. Renamed VCAP1/2 into VCAP_1/_2 in <i>Figure 10:</i>
		STM32F401xB/STM32F401xC WLCSP49 pinout, Figure 11: STM32F401xB/STM32F401xC UFQFPN48 pinout, Figure 13: STM32F401xB/STM32F401xC LQFP100 pinout and Figure 14: STM32F401xB/STM32F401xC UFBGA100 pinout.
		In whole <i>Section 6: Electrical characteristics</i> , modified notes related to characteristics guaranteed by design and by tests during characterization.
		Updated PLS[2:0]=101 (falling edge) in <i>Table 19: Embedded reset and power control block characteristics</i> .
		Updated Table 39: HSI oscillator characteristics.
		Updated V _{HYS} in <i>Table 56: I/O AC characteristics</i> .
		Added t _{SP} in <i>Table 59: I²C characteristics</i> .
06-Aug-2015	5	Removed note 1 in <i>Table</i> 67: <i>ADC</i> accuracy at f_{ADC} = 18 MHz, <i>Table</i> 68: <i>ADC</i> accuracy at f_{ADC} = 30 MHz and <i>Table</i> 69: <i>ADC</i> accuracy at f_{ADC} = 36 MHz.
		Added WLCSP49 Figure 47: WLCSP49 0.4 mm pitch wafer level chip scale recommended footprint and Table 80: WLCSP49 recommended PCB design rules (0.4 mm pitch). Added Section : WLCSP49 device marking.
		Updated Section : UFQFPN48 device marking.
		Updated Table 82: LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data and Section : LQFP64 device marking.
		Updated Section : LQFP64 device marking and Section : LQFP100 device marking
		Updated Table 84: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data, Figure 59: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint. Added Table 85:
		UFBGA100 recommended PCB design rules (0.5 mm pitch BGA). updated Section : UFBGA100 device marking.
		Added Temperature range 7 in Table 87: Ordering information scheme.

