
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401ceu6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.19.3	Independent watchdog	. 27
		3.19.4	Window watchdog	. 27
		3.19.5	SysTick timer	. 28
	3.20	Inter-in	tegrated circuit interface (I2C)	. 28
	3.21	Univers	sal synchronous/asynchronous receiver transmitters (USART) .	. 28
	3.22	Serial p	peripheral interface (SPI)	. 29
	3.23	Inter-in	tegrated sound (I ² S)	. 29
	3.24	Audio F	PLL (PLLI2S)	. 29
	3.25	Secure	e digital input/output interface (SDIO)	. 30
	3.26	Univers	sal serial bus on-the-go full-speed (OTG_FS)	. 30
	3.27	Genera	al-purpose input/outputs (GPIOs)	. 30
	3.28	Analog	-to-digital converter (ADC)	. 30
	3.29	Tempe	rature sensor	. 31
	3.30	Serial v	wire JTAG debug port (SWJ-DP)	. 31
	3.31	Embed	lded Trace Macrocell™	. 31
4	Pino	uts and	pin description	. 32
5	Mem	ory map	pping	50
5 6			pping	
		rical ch		54
	Elect	rical ch	aracteristics	. 54 . 54
	Elect	rical ch Parame	eter conditions	. 54 . 54 . 54
	Elect	rical ch Parame 6.1.1	eter conditions	. 54 . 54 . 54 . 54
	Elect	Frical ch Parame 6.1.1 6.1.2	eter conditions	54 54 54 54 54
	Elect	Frical ch Parame 6.1.1 6.1.2 6.1.3	eter conditions Minimum and maximum values Typical values Typical curves	54 54 54 54 54 54 54
	Elect	Frical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4	eter conditions	54 54 54 54 54 54 54 55
	Elect	Frical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	maracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage	54 54 54 54 54 54 54 55 55 56
	Elect	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	naracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme	54 54 54 54 54 54 55 55 56 57
	Elect	Frical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolu	naracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement	54 54 54 54 54 55 55 56 57 57
	Elect 6.1	rrical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolu Operat 6.3.1	haracteristics eter conditions Minimum and maximum values Typical values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions	54 54 54 54 54 55 55 56 57 57 59 . 59
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operat 6.3.1 6.3.2	maracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions VCAP_1/VCAP_2 external capacitors	. 54 . 54 . 54 . 54 . 54 . 55 . 55 . 57 . 57 . 59 . 59 . 61
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolu Operat 6.3.1 6.3.2 6.3.3	maracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions VCAP_1/VCAP_2 external capacitors Operating conditions at power-up/power-down (regulator ON)	54 54 54 54 54 55 55 57 57 57 59 59 59 61 59
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolu Operat 6.3.1 6.3.2 6.3.3 6.3.4	maracteristics eter conditions Minimum and maximum values Typical values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions VCAP_1/VCAP_2 external capacitors Operating conditions at power-up/power-down (regulator ON) Operating conditions at power-up / power-down (regulator OFF)	. 54 . 54 . 54 . 54 . 55 . 55 . 55 . 57 . 59 . 59 . 59 . 61 . 61
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolu Operat 6.3.1 6.3.2 6.3.3	maracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions VCAP_1/VCAP_2 external capacitors Operating conditions at power-up/power-down (regulator ON)	. 54 . 54 . 54 . 54 . 55 . 55 . 55 . 57 . 59 . 59 . 59 . 61 . 61

3.15.3 Regulator ON/OFF and internal power supply supervisor availability

Package	Regulator ON	Regulator OFF	Power supply supervisor ON	Power supply supervisor OFF
UFQFPN48	Yes	No	Yes	No
WLCSP49	Yes	No	Yes PDR_ON set to VDD	Yes PDR_ON external control ⁽¹⁾
LQFP64	Yes	No	Yes	No
LQFP100	Yes	No	Yes	No
UFBGA100	Yes BYPASS_REG set to VSS	Yes BYPASS_REG set to VDD	Yes PDR_ON set to VDD	Yes PDR_ON external control ⁽¹⁾

Table 3. Regulator ON/OFF and internal power supply supervisor availability

1. Refer to Section 3.14: Power supply supervisor

3.16 Real-time clock (RTC) and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC features a reference clock detection, a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.17: Low-power modes).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

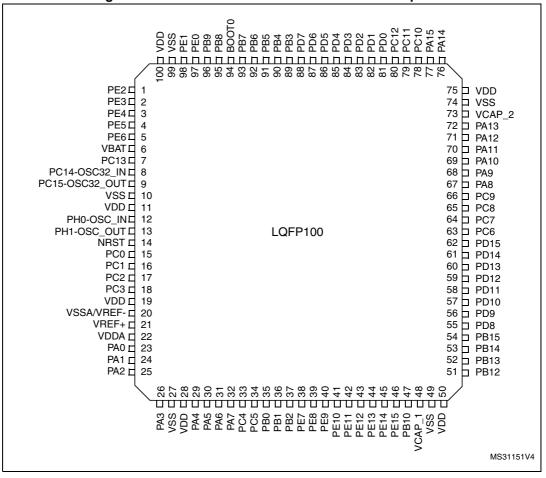


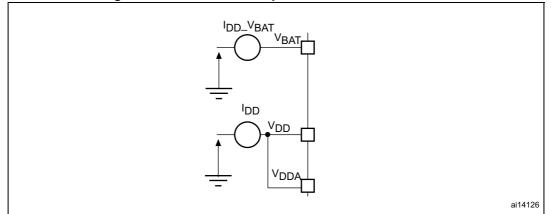
Figure 13. STM32F401xB/STM32F401xC LQFP100 pinout

1. The above figure shows the package top view.

5

DocID024738 Rev 6

45/135


	Table 9. Alternate function mapping (continued)																
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PB0	-	TIM1_CH2N	TIM3_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB3	JTDO- SWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK/ I2S3_CK	-	-	I2C2_SDA	-	-	-	-	-	EVENT OUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_ MISO	SPI3_MISO	I2S3ext_S D	-	I2C3_SDA	-	-	-	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1 _MOSI	SPI3_MOSI/ I2S3_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_ TX	-	-	-	-	-	-	-	EVENT OUT
E B	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	-	-	-	EVENT OUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	-	-	-	SDIO_ D4	-	-	EVENT OUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	SDIO_ D5	-	-	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB14	-	TIM1_CH2N	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB15	RTC_ REFN	TIM1_CH3N	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT

Bus	Boundary address	Peripheral
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6000 - 0x4000 6FFF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 4800 - 0x4000 53FF	Reserved
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	I2S3ext
	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
APB1	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 1000 - 0x4000 27FF	Reserved
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)

6.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit	
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA}, V_{DD} and $V_{BAT})^{(1)}$	-0.3	4.0		
	Input voltage on FT pins ⁽²⁾		V _{DD} +4.0	V	
V _{IN}	Input voltage on any other pin		4.0		
	Input voltage for BOOT0	V _{SS}	9.0		
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50		
V _{SSX} -V _{SS}	Variations between all the different ground pins including V _{REF-}		50	mV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical		

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V _{DD_x} power lines (source) ⁽¹⁾	160	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines (sink) ⁽¹⁾	-160	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
Ι _{ΙΟ}	Output current sourced by any I/O and control pin	-25	mA
ΣI	Total output current sunk by sum of all I/O and control pins $^{(2)}$		
ΣΙ _{ΙΟ}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-120	
(3)	Injected current on FT pins ⁽⁴⁾	5/10	
I _{INJ(PIN)} ⁽³⁾	Injected current on NRST and B pins ⁽⁴⁾	_5/+0	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	
Τ _J	Maximum junction temperature	125	
T _{LEAD}	Maximum lead temperature during soldering (WLCSP49, LQFP64/100, UFQFPN48, UFBGA100)	see note ⁽¹⁾	°C

Table 13. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

6.3 Operating conditions

6.3.1 General operating conditions

Table 14	General	operating	conditions
----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Power Scale3: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x01	0	-	60	
f _{HCLK}	Internal AHB clock frequency	Power Scale2: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x10	0	-	84	MHz
f _{PCLK1}	Internal APB1 clock frequency		0	-	42	
f _{PCLK2}	Internal APB2 clock frequency		0	-	84	
V_{DD}	Standard operating voltage		1.7 ⁽¹⁾	-	3.6	
V _{DDA} (2)(3)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $V_{DD}^{(4)}$	1.7 ⁽¹⁾	-	2.4	
(2)(3)	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as $v_{DD}^{(1)}$	2.4	-	3.6	
V _{BAT}	Backup operating voltage		1.65	-	3.6	
N/	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	VOS[1:0] bits in PWR_CR register = 0x01 Max frequency 60 MHz	1.08 ⁽⁵⁾	1.14	1.20 ⁽⁵⁾	V
V ₁₂		VOS[1:0] bits in PWR_CR register = 0x10 Max frequency 84 MHz	1.20 ⁽⁵⁾	1.26	1.32 ⁽⁵⁾	
	Regulator OFF: 1.2 V external	Max. frequency 60 MHz.	1.1	1.14	1.2	
V ₁₂	voltage must be supplied on V_{CAP_1}/V_{CAP_2} pins	Max. frequency 84 MHz.	1.2	1.26	1.32	
	Input voltage on RST and FT	$2 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-0.3	-	5.5	
V_{IN}	pins ⁽⁶⁾	$V_{DD} \leq 2 V$	-0.3	-	5.2	
	Input voltage on BOOT0 pin		0	-	9	
		UFQFPN48	-	-	625	mW
	Maximum allowed package	WLCSP49	-	-	385	
PD	power dissipation for suffix 6	LQFP64	-	-	313	
	and 7 ⁽⁷⁾	LQFP100	-	-	465]
		UFBGA100	-	-	323]

Table 23. Typical and maximum current consumption in run mode, code with data processing	
(ART accelerator enabled except prefetch) running from Flash memory - V _{DD} = 3.3 V	

			¢			Max ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			84	22.5	23	24	25	
			60	14.8	16	17	18	
		External clock, all peripherals enabled ⁽²⁾⁽³⁾	40	11.0	12	13	14	
			30	8.9	10	11	12	
1	Supply current		20	7.3	8	9	10	mA
I _{DD}	in Run mode		84	11.8	13	14	15	ШA
			60	7.9	9	10	11	
		External clock, all peripherals disabled ⁽³⁾	40	5.8	7	8	9	
			30	4.8	6	7	8	
			20	4.0	5	6	7	

1. Guaranteed by characterization, unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

Table 24. Typical and maximum current consumption in run mode, code with data processing(ART accelerator disabled) running from Flash memory

			f _{HCLK}			Max ⁽¹⁾		
Symbol	Parameter	Conditions	'HCLK (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			84	30.6	32	34	35	
			60	21.4	22	24	25	
		External clock, all peripherals enabled ⁽²⁾⁽³⁾	40	15.6	16	17	18	
			30	12.7	13	14	15	
laa	Supply current		20	10.0	11	12	13	mA
I _{DD}	in Run mode		84	19.9	21	23	25	
			60	14.6	15	16	17	
		External clock, all peripherals disabled ⁽³⁾	40	10.4	11	12	13	
			30	8.6	9	10	11	
			20	6.7	7	8	9	

1. Guaranteed by characterization, unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

			Тур	Max ⁽¹⁾			
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Main regulator usage	Flash in Stop mode, all	109	135	440	650	
	Low power regulator usage	oscillators OFF, no independent watchdog	41	65	310	530 ⁽²⁾	
I _{DD_STOP}	Main regulator usage	Flash in Deep power	72	95	345	530	μA
-	Low power regulator usage	down mode, all oscillators OFF, no independent	12	36	260	510 ⁽²⁾	
	Low power low voltage regulator usage	watchdog	10	27	230	460	

Table 27. Typical and maximum current consumptions in Stop mode - V_{DD} =1.8 V

1. Guaranteed by characterization.

2. Guaranteed by test in production.

Symbol			Тур		Max ⁽¹⁾	Max ⁽¹⁾		
	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 ℃	T _A = 105 °C	Unit	
	Main regulator usage	Flash in Stop mode, all	111	140	450	670		
	Low power regulator usage	oscillators OFF, no independent watchdog	42	65	330	560		
I _{DD_STOP}	Main regulator usage	Flash in Deep power	73	100	360	560	μA	
-	Low power regulator usage	down mode, all oscillators OFF, no independent	12	36	270	520		
	Low power low voltage regulator usage	watchdog	10	28	230	470		

Table 28. Typical and maximum current consumption in Stop mode - V_{DD} =3.3 V

1. Guaranteed by characterization.

Table 29. Typical and maximum current	consumption in Standby mode - V _{DD} =1.8 V

			Typ ⁽¹⁾		Max ⁽²)	
Symbol	Symbol Parameter Condition		T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	cappij canonem	Low-speed oscillator (LSE) and RTC ON	2.4	4.0	12.0	24.0	μA
DD_STBY	Standby mode	RTC and LSE OFF	1.8	3.0 ⁽³⁾	11.0	23.0 ⁽³⁾	μΛ

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 $\mu A.$

2. Guaranteed by characterization, unless otherwise specified.

3. Guaranteed by test in production.

series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 38*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	18.4	-	MΩ
I _{DD}	LSE current consumption		-	-	1	μA
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	0.56	μA/V
t _{SU(LSE)} ⁽²⁾	startup time	V_{DD} is stabilized	-	2	-	s

Table 38. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is guaranteed by characterization. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 192 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 192 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	

Table 41. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	
f _{PLLI2S_OUT}	PLLI2S multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output			192	-	432	
+	PLLI2S lock time	VCO freq = 192 MHz	2	75	-	200	110
t _{LOCK}		VCO freq = 432 MHz	2	100	-	300	μs
		Cycle to cycle at	RMS	-	90	-	
	Master I2S clock jitter	12.288 MHz on 48 KHz period, N=432, R=5	peak to peak	-	±280	-	
Jitter ⁽³⁾		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples	f	-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 on 1000 samples	KHz	-	400	-	
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	

Table 42. PLLI2S (audio PLL) characteristics

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization.

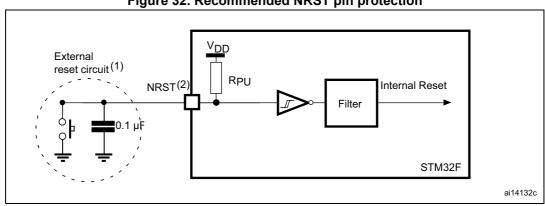


Figure 32. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The external capacitor must be placed as close as possible to the device.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in 3. Table 57. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in Table 58 are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

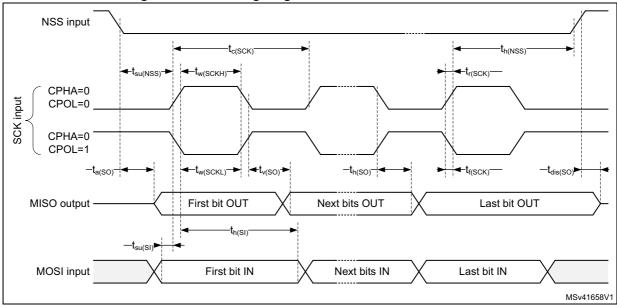
Symbol	Parameter	Conditions ⁽³⁾	Min	Мах	Unit
		AHB/APBx prescaler=1	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	or 2 or 4, f _{TIMxCLK} = 84 MHz	11.9	-	ns
		AHB/APBx prescaler>4,	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 84 MHz	11.9	-	ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 84 MHz	0	42	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
tCOUNTER	16-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 84 MHz	0.0119	780	μs
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}
_		f _{TIMxCLK} = 84 MHz	-	51.1	S

Table 58. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.

Guaranteed by design. 2.

The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx. 3.



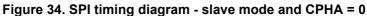

Symbol	ymbol Parameter Conditions		Min	Тур	Мах	Unit
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	3	5	ns
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	2	-	-	ns

Table 61. SPI dynamic characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

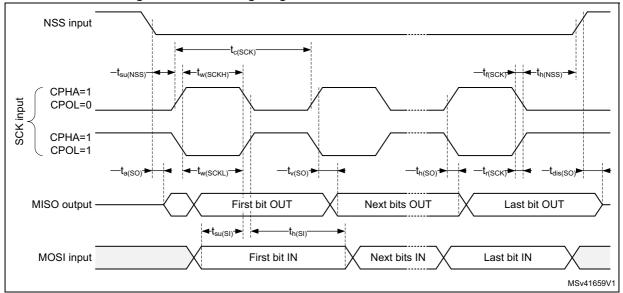
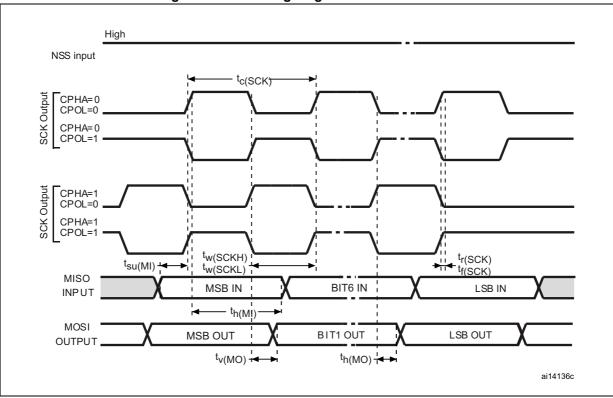
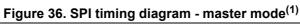
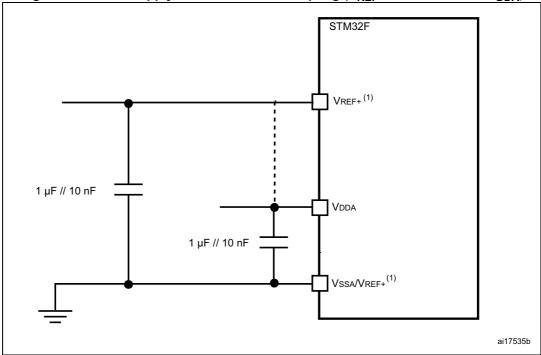




Figure 35. SPI timing diagram - slave mode and CPHA = $1^{(1)}$





General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 42* or *Figure 43*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 WLCSP49 2.965x2.965 mm package information

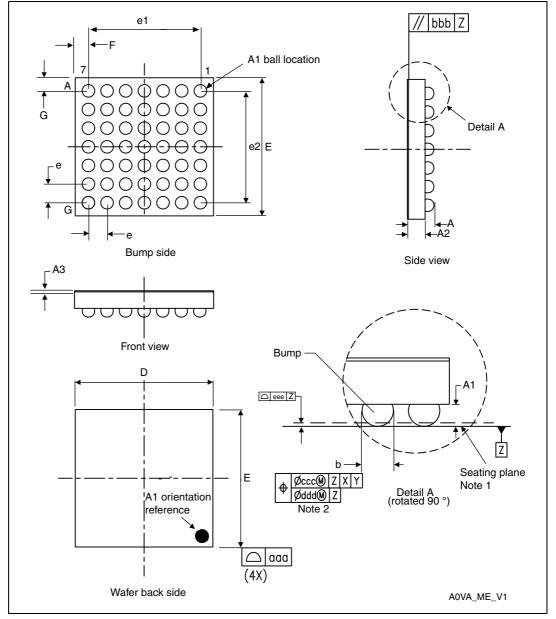


Figure 46. WLCSP49 - 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

······································					
Dimension	Recommended values				
Pitch	0.4 mm				
Dpad	260 μm max. (circular) 220 μm recommended				
Dsm	300 μm min. (for 260 μm diameter pad)				
PCB pad design	Non-solder mask defined via underbump allowed				

 Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch)

WLCSP49 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

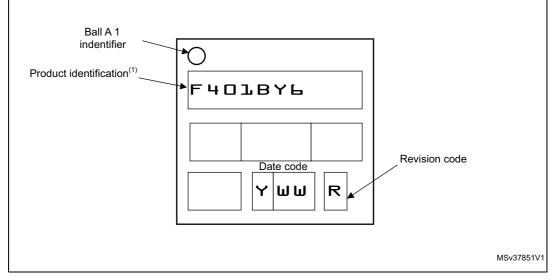
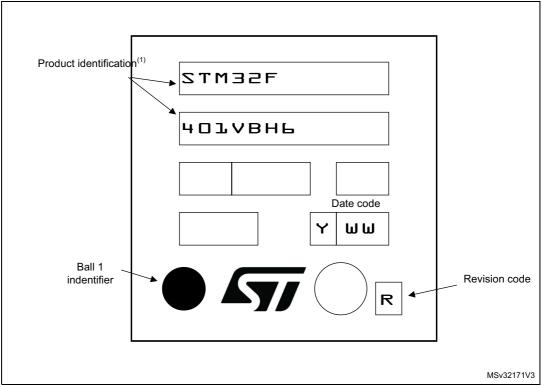


Figure 48. WLCSP49 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFBGA100 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

9 Revision history

Date	Revision	Changes
23-Jul-2013	1	Initial release.
06-Sep-2013	2	Updated product status to production data Added I2C 1 MBit/s in <i>Features</i> Updated <i>Figure 1: Compatible board design for LQFP100 package</i> Added notes and revised the main function after reset columnn <i>Table 8: STM32F401xB/STM32F401xC pin definitions</i> . Replaced 'I2S2_CKIN' signal name with 'I2S_CKIN' and added EVENTOUT alternate function in <i>Table 8:</i> <i>STM32F401xB/STM32F401xC pin definitions</i> and <i>Table 9: Alternate</i> <i>function mapping</i> Updated <i>Section 3.28: Analog-to-digital converter (ADC)</i> Updated the reference of V _{ESD(CDM)} in <i>Table 51: ESD absolute</i> <i>maximum ratings</i> Updated <i>Section 3.20: Inter-integrated circuit interface (I2C)</i> , including <i>Table 5: Comparison of I2C analog and digital filters</i> Removed first sentence ("Unless otherwise specified") in <i>I2C</i> <i>interface characteristics</i> Changed the order of the tables in <i>Section 6.3.6: Supply current</i> <i>characteristics</i> Modified the "SDA and SCL rise time" fast mode I2C minimum value in <i>Table 59: I²C characteristics</i> Updated <i>Figure 33: I²C bus AC waveforms and measurement circuit</i> and <i>Table 60: SCL frequency (f_{PCLK1}= 42 MHz, V_{DD} = V_{DD_12C} = 3.3 V)</i> Replaced "Marking of engineering samples" sections with "Marking of samples" sections, and added <i>UFBGA100 device marking</i> section for package UFGBA100 in <i>Section 7: Package information</i>
08-Nov-2013	3	Updated UFBGA100 in <i>Table 86: Package thermal characteristics</i> . Changed WLCSP49 package measurements to 3 x 3 mm in <i>Section 7.1</i> .

Table 88. Document revision history

