

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401rbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Compatible board design for LQFP100 package	12
Figure 2.	Compatible board design for LQFP64 package	13
Figure 3.	STM32F401xB/STM32F401xC block diagram	14
Figure 4.	Multi-AHB matrix	16
Figure 5.	Power supply supervisor interconnection with internal reset OFF	19
Figure 6.	PDR_ON control with internal reset OFF	20
Figure 7.	Regulator OFF	22
Figure 8.	Startup in regulator OFF: slow V _{DD} slope -	
	power-down reset risen after V _{CAP 1} /V _{CAP 2} stabilization.	23
Figure 9.	Startup in regulator OFF mode: fast V _{DD} slope -	
	power-down reset risen before V _{CAP 1} /V _{CAP 2} stabilization	23
Figure 10.	STM32F401xB/STM32F401xC WLCSP49 pinout	32
Figure 11.	STM32F401xB/STM32F401xC UFQFPN48 pinout	33
Figure 12.	STM32F401xB/STM32F401xC LQFP64 pinout	34
Figure 13.	STM32F401xB/STM32F401xC LQFP100 pinout	35
Figure 14.	STM32F401xB/STM32F401xC UFBGA100 pinout	36
Figure 15.	Memory map	50
Figure 16.	Pin loading conditions	54
Figure 17.	Input voltage measurement	55
Figure 18.	Power supply scheme	56
Figure 19.	Current consumption measurement scheme	57
Figure 20.	External capacitor C _{EXT}	61
Figure 21.	Typical V _{BAT} current consumption (LSE and RTC ON)	69
Figure 22.	High-speed external clock source AC timing diagram	75
Figure 23.	Low-speed external clock source AC timing diagram	76
Figure 24.	Typical application with an 8 MHz crystal	77
Figure 25.	Typical application with a 32.768 kHz crystal	78
Figure 26.	ACC _{HSI} versus temperature	79
Figure 27.	ACC _{LSI} versus temperature	80
Figure 28.	PLL output clock waveforms in center spread mode	83
Figure 29.	PLL output clock waveforms in down spread mode	83
Figure 30.	FT I/O input characteristics	91
Figure 31.	I/O AC characteristics definition	94
Figure 32.	Recommended NRST pin protection	95
Figure 33.	I ² C bus AC waveforms and measurement circuit	97
Figure 34.	SPI timing diagram - slave mode and CPHA = 0	99
Figure 35.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	99
Figure 36.	SPI timing diagram - master mode ⁽¹⁾	100
Figure 37.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	102
Figure 38.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	102
Figure 39.	USB OTG FS timings: definition of data signal rise and fall time	104
Figure 40.	ADC accuracy characteristics	108
Figure 41.	Typical connection diagram using the ADC	108
Figure 42.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	109
Figure 43.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	110
Figure 44.	SDIO high-speed mode	112
Figure 45.	SD default mode	112
Figure 46.	WLCSP49 - 0.4 mm pitch wafer level chip scale package outline	114

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 6*).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.

Figure 6. PDR_ON control with internal reset OFF

3.15 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.19.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.20 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative. They also support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 5).

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

3.21 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART6).

These three interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The USART2 interface communicates at up to 5.25 bit/s.

USART1 and USART2 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

4 Pinouts and pin description

Figure 10. STM32F401xB/STM32F401xC WLCSP49 pinout

1. The above figure shows the package top view.

Pin Number						re				
UQFN48	WLCSP49	LQFP64	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structu	Notes	Alternate functions	Additional functions
47	A6	63	99	-	VSS	S	-	-	-	-
-	B6	-	-	H3	PDR_ON	Ι	FT	-	-	-
48	A7	64	100	-	VDD	S	-	-	-	-

Table 8. STM32F401xB/STM32F401xC pin definitions (continued)

1. Function availability depends on the chosen device.

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF.
 These I/Os must not be used as a current source (e.g. to drive an LED).

Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F401xx reference manual.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), 5. then PA0 is used as an internal Reset (active low)

46/135

	Dort	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PC0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC2	-	-	-	-	-	SPI2_ MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC6	-		TIM3_CH1	-	-	I2S2_MCK	-	-	USART6_ TX	-	-	-	SDIO_ D6	-	-	EVENT OUT
tc	PC7	-		TIM3_CH2	-	-	-	I2S3_MCK	-	USART6_ RX	-	-	-	SDIO_ D7	-	-	EVENT OUT
Por	PC8	-	-	TIM3_CH3	-	-	-	-	-	USART6_ CK	-	-	-	SDIO_ D0	-	-	EVENT OUT
	PC9	MCO_2	-	TIM3_CH4	-	I2C3_SDA	I2S_CKIN	-	-	-	-	-	-	SDIO_ D1	-	-	EVENT OUT
	PC10	-	-	-	-	-	-	SPI3_SCK/ I2S3_CK	-	-	-	-	-	SDIO_ D2	-	-	EVENT OUT
	PC11	-	-	-	-	-	I2S3ext_ SD	SPI3_MISO	-	-	-	-	-	SDIO_ D3	-	-	EVENT OUT
	PC12	-	-	-	-	-	-	SPI3_MOSI/ I2S3_SD	-	-	-	-	-	SDIO_ CK	-	-	EVENT OUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

 Table 9. Alternate function mapping (continued)

Pinouts and pin description

STM32F401xB STM32F401xC

5

4
7
ω
б

Ta	able	9. /	Alternate	function	ma	apping	(C	ontinue	d)

		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PD0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	-	-	SDIO_ CMD	-	-	EVENT OUT
	PD3	-	-	-	-	-	SPI2_SCK/ I2S2_CK	-	USART2_ CTS		-	-	-	-	-	-	EVENT OUT
	PD4	-	-	-	-	-	-	-	USART2_ RTS		-	-	-	-	-	-	EVENT OUT
	PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	-	-	-	EVENT OUT
	PD6	-	-	-	-	-	SPI3_MOSI /I2S3_SD	-	USART2_ RX	-	-	-	-	-	-	-	EVENT OUT
ţD	PD7	-	-	-	-	-	-	-	USART2_ CK	-	-	-	-	-	-	-	EVENT OUT
Por	PD8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD12	-	-	TIM4_CH1	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

STM32F401xB STM32F401xC

Pinouts and pin description

6.3 Operating conditions

6.3.1 General operating conditions

Table 14	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
£		Power Scale3: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x01	0	-	60		
HCLK		Power Scale2: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x10	0	-	84	MHz	
f _{PCLK1}	Internal APB1 clock frequency		0	-	42		
f _{PCLK2}	Internal APB2 clock frequency		0	-	84		
V _{DD}	Standard operating voltage		1.7 ⁽¹⁾	-	3.6		
V _{DDA}	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $\mathcal{V} = \begin{pmatrix} 4 \end{pmatrix}$	1.7 ⁽¹⁾	-	2.4		
(2)(3)	Analog operating voltage (ADC limited to 2.4 M samples)		2.4	-	3.6		
V _{BAT}	Backup operating voltage		1.65	-	3.6		
	Regulator ON: 1.2 V internal	VOS[1:0] bits in PWR_CR register = 0x01 Max frequency 60 MHz	1.08 ⁽⁵⁾	1.14	1.20 ⁽⁵⁾	V	
V ₁₂	voltage on V_{CAP_1}/V_{CAP_2} pins	VOS[1:0] bits in PWR_CR register = 0x10 Max frequency 84 MHz	1.20 ⁽⁵⁾	1.26	1.32 ⁽⁵⁾	v	
	Regulator OFF: 1.2 V external	Max. frequency 60 MHz.	1.1	1.14	1.2		
V ₁₂	voltage must be supplied on V _{CAP_1} /V _{CAP_2} pins	Max. frequency 84 MHz.	1.2	1.26	1.32		
	Input voltage on RST and FT	$2 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	-0.3	-	5.5		
V _{IN}	pins ⁽⁶⁾	$V_{DD} \le 2 V$	-0.3	-	5.2		
	Input voltage on BOOT0 pin		0	-	9		
		UFQFPN48	-	-	625		
	Maximum allowed package	WLCSP49	-	-	385	mW	
PD	power dissipation for suffix 6	LQFP64	-	-	313		
2		LQFP100	-	-	465		
		UFBGA100	-	-	323		

Figure 23. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 37*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{OSC_IN}	Oscillator frequency		4	-	26	MHz			
R _F	Feedback resistor		-	200	-	kΩ			
la a	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω C _L =5 pF @25 MHz	-	450	-				
DD	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω C _L =10 pF @25 MHz	-	530	-	μΑ			
G _{m_crit_max}	Maximum critical crystal g _m	Startup	-	-	1	mA/V			
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	-	2	-	ms			

Table 37.	HSE 4-26	MHz oscillator	characteristics ⁽¹⁾
			onunuotonistios

1. Guaranteed by design.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 24*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the

Figure 28 and *Figure 29* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

T_{mode} is the modulation period.

md is the modulation depth.

6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

	Table 44.	Flash	memory	characteristics
--	-----------	-------	--------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}	Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V _{DD} = 3.3 V	-	12	-	

DocID024738 Rev 6

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	arameter Conditions Monitored frequency bar		Max vs. [f _{HSE} /f _{CPU}]	Unit
				25/84 MHz	
S _{EMI}	Peak level	V_{DD} = 3.3 V, T_A = 25 °C, conforming to IEC61967-2	0.1 to 30 MHz	-6	
			30 to 130 MHz	-6	dBµV
			130 MHz to 1 GHz	-10	
			SAE EMI Level	1.5	-

Table 49. EMI characteristics for WLCSP49

Table 50. EMI characteristics for LQFP100

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 25/84 MHz	Unit	
	Peak level	V_{DD} = 3.3 V, T_A = 25 °C, conforming to IEC61967-2	0.1 to 30 MHz	18		
6			30 to 130 MHz	23	dBµV	
S _{EMI}			130 MHz to 1 GHz	12		
			SAE EMI Level	3.5	-	

6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Electrical characteristics

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
			C _L = 50 pF, V _{DD} ≥ 2.70 V	-	-	25		
01	f	Maximum fraguana $u^{(3)}$	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	12.5		
	Imax(IO)out		C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	50	IVITIZ	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	20		
UT			C _L = 50 pF, V _{DD} ≥2.7 V	-	-	10		
	t _{f(IO)out} /	Output high to low level fall	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	20	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	6	115	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	50 ⁽⁴⁾		
	f _{max(IO)out}	Maximum fraguana $u^{(3)}$	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25		
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾	IVITIZ	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾		
10	^t f(IO)out [/] t _{r(IO)out}	$t_{f(IO)out}^{\dagger}$ Output high to low level fall time and output low to high level rise time	C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	6	ns	
			C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	4		
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6		
			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾		
	F	Maximum fraguena (3)	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾	MHz	
	F _{max(IO)out}	Maximum requency	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	180 ⁽⁴⁾		
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	100 ⁽⁴⁾		
11			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	4		
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	6	20	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	2.5	ns	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	4		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	-	ns	

Table 56. I/O AC characteristics ⁽¹⁾⁽²⁾ ((continued)
--	-------------

1. Guaranteed by characterization.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 31*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

6.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 54*).

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. Refer to *Table 54: I/O static characteristics* for the values of VIH and VIL for NRST pin.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 57. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

		er i ajname enaracterionee (e	, on a car			
Symbol	Parameter Conditions		Min	Тур	Мах	Unit
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	3	5	ns
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	2	-	-	ns

Table 61. SPI dynamic characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

Figure 35. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

DocID024738 Rev 6

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	128 clock frequency	Master data: 32 bits	-	64xFs	
^I CK	125 Clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	6	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input actur timo	Master receiver	7.5	-	
t _{su(SD_SR)}		Slave receiver	2	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	
t _{h(SD_SR)}		Slave receiver	0	-	
t _{v(SD_ST)}		Slave transmitter (after enable edge)	-	27	
t _{h(SD_ST)}	Data output valid time				
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2.5	-	

Table 6	52. I ² S	dynamic	characteristics ⁽¹⁾
---------	----------------------	---------	--------------------------------

1. Guaranteed by characterization.

2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency).

Note:

Refer to the I2S section of the reference manual for more details on the sampling frequency (F_{S}) .

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

- 1. See also Table 68.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- End point correlation line. 4.

 E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. 5.

ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

- Refer to Table 66 for the values of RAIN, RADC and CADC. 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

7.3 LQFP64 package information

Figure 52. LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.5000	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 82. LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

DocID024738 Rev 6

7.4 LQFP100 package information

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.60	-	-	0.063
A1	0.050	-	0.150	0.002	-	0.0059
A2	1.350	1.40	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.622	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.622	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
К	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ссс	0.080			0.0031		

Table 83. LQPF100- 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 56. LQFP100 recommended footprint

1. Dimensions are in millimeters.

